Mean Convergence and Weak Laws of Large Numbers for Multidimensional Arrays of Random Elements
被引:1
|
作者:
Anh, Vo Thi Van
论文数: 0引用数: 0
h-index: 0
机构:
HCMC Univ Technol & Educ, Dept Appl Sci, 01 Vo Ngan St, Ho Chi Minh City, VietnamHCMC Univ Technol & Educ, Dept Appl Sci, 01 Vo Ngan St, Ho Chi Minh City, Vietnam
Anh, Vo Thi Van
[1
]
Tu, Nguyen Ngoc
论文数: 0引用数: 0
h-index: 0
机构:
HCMC Univ Technol & Educ, Dept Appl Sci, 01 Vo Ngan St, Ho Chi Minh City, VietnamHCMC Univ Technol & Educ, Dept Appl Sci, 01 Vo Ngan St, Ho Chi Minh City, Vietnam
Tu, Nguyen Ngoc
[1
]
机构:
[1] HCMC Univ Technol & Educ, Dept Appl Sci, 01 Vo Ngan St, Ho Chi Minh City, Vietnam
Mean convergence;
Weak law of large numbers;
Banach space-valued random element;
Maximum normed partial sum;
RANDOM-VARIABLES;
DOUBLE SUMS;
MARCINKIEWICZ;
D O I:
10.1007/s40840-023-01484-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
This paper establishes mean convergence theorems and weak laws of large numbers for the maximum normed partial sums from a d-dimensional array of random elements taking values in a real separable Banach space, irrespective of their joint distributions. The main results extend and improve several ones in the literature. The sharpness of the results is illustrated by three examples.
机构:
Zhejiang Gongshang Univ, Dept Math & Stat, Hangzhou 310035, Peoples R ChinaZhejiang Gongshang Univ, Dept Math & Stat, Hangzhou 310035, Peoples R China