Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction

被引:8
|
作者
Azlim Khan, Azwaar Khan [1 ]
Ahamed Hassain Malim, Nurul Hashimah [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
来源
MOLECULES | 2023年 / 28卷 / 04期
关键词
drug-target interaction; data resampling; machine learning; deep learning; class imbalance; SMOTE; DISCOVERY; IDENTIFICATION; THERAPY; SMOTE;
D O I
10.3390/molecules28041663
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of drug-target interactions (DTIs) is a vital step in drug discovery. The success of machine learning and deep learning methods in accurately predicting DTIs plays a huge role in drug discovery. However, when dealing with learning algorithms, the datasets used are usually highly dimensional and extremely imbalanced. To solve this issue, the dataset must be resampled accordingly. In this paper, we have compared several data resampling techniques to overcome class imbalance in machine learning methods as well as to study the effectiveness of deep learning methods in overcoming class imbalance in DTI prediction in terms of binary classification using ten (10) cancer-related activity classes from BindingDB. It is found that the use of Random Undersampling (RUS) in predicting DTIs severely affects the performance of a model, especially when the dataset is highly imbalanced, thus, rendering RUS unreliable. It is also found that SVM-SMOTE can be used as a go-to resampling method when paired with the Random Forest and Gaussian Naive Bayes classifiers, whereby a high F1 score is recorded for all activity classes that are severely and moderately imbalanced. Additionally, the deep learning method called Multilayer Perceptron recorded high F1 scores for all activity classes even when no resampling method was applied.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] CoDe-DTI: Collaborative Deep Learning-based Drug-Target Interaction Prediction
    Yasuo, Nobuaki
    Nakashima, Yusuke
    Sekijima, Masakazu
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 792 - 797
  • [32] Drug-target interaction prediction using semi-bipartite graph model and deep learning
    Eslami Manoochehri, Hafez
    Nourani, Mehrdad
    BMC BIOINFORMATICS, 2020, 21 (Suppl 4)
  • [33] Drug-target interaction prediction using semi-bipartite graph model and deep learning
    Hafez Eslami Manoochehri
    Mehrdad Nourani
    BMC Bioinformatics, 21
  • [34] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05): : 348 - 358
  • [35] A deep learning method for drug-target affinity prediction based on sequence interaction information mining
    Jiang, Mingjian
    Shao, Yunchang
    Zhang, Yuanyuan
    Zhou, Wei
    Pang, Shunpeng
    PEERJ, 2023, 11
  • [36] A deep learning method for drug-target affinity prediction based on sequence interaction information mining
    Jiang, Mingjian
    Shao, Yunchang
    Zhang, Yuanyuan
    Zhou, Wei
    Pang, Shunpeng
    PEERJ, 2023, 11
  • [37] Predicting drug-target interaction network using deep learning model
    You, Jiaying
    McLeod, Robert D.
    Hu, Pingzhao
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 : 90 - 101
  • [38] Drug-target interaction prediction by learning from local information and neighbors
    Mei, Jian-Ping
    Kwoh, Chee-Keong
    Yang, Peng
    Li, Xiao-Li
    Zheng, Jie
    BIOINFORMATICS, 2013, 29 (02) : 238 - 245
  • [39] NeuRank: learning to rank with neural networks for drug-target interaction prediction
    Wu, Xiujin
    Zeng, Wenhua
    Lin, Fan
    Zhou, Xiuze
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [40] Drug-target interaction prediction using ensemble learning and dimensionality reduction
    Ezzat, Ali
    Wu, Min
    Li, Xiao-Li
    Kwoh, Chee-Keong
    METHODS, 2017, 129 : 81 - 88