Resampling methods in ANOVA for data from the von Mises-Fisher distribution

被引:2
|
作者
Figueiredo, Adelaide [1 ,2 ]
机构
[1] Univ Porto, Sch Econ & Management, Rua Dr Roberto Frias, P-4200464 Porto, Portugal
[2] INESC TEC Porto, LIAAD, Rua Dr Roberto Frias, P-4200464 Porto, Portugal
关键词
Bootstrap; Directional data; Hypersphere; Monte Carlo methods; Permutation test; Simulation; CONFIDENCE-REGIONS; PERMUTATION TESTS; MULTISAMPLE TESTS; BOOTSTRAP METHODS;
D O I
10.1080/03610918.2021.1976796
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An important problem in directional statistics is to test the null hypothesis of a common mean direction for several populations. The Analysis of Variance (ANOVA) test for vectorial data may be used to test the hypothesis of the equality of the mean directions for several von Mises-Fisher populations. As this test is valid only for large concentrations, we propose in this paper to apply the resampling techniques of bootstrap and permutation to the ANOVA test. We carried out an extensive simulation study in order to evaluate the performance of the ANOVA test with the resampling techniques, for several sphere dimensions and different sample sizes and we compare with the usual ANOVA test for data from von Mises-Fisher populations. The purpose of this simulation study is also to investigate whether the proposed tests are preferable to the ANOVA test, for low concentrations and small samples. Finally, we present an example with spherical data.
引用
收藏
页码:4999 / 5013
页数:15
相关论文
共 50 条
  • [31] Simulation of the Matrix Bingham-von Mises-Fisher Distribution, With Applications to Multivariate and Relational Data
    Hoff, Peter D.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (02) : 438 - 456
  • [32] Asymmetric biclustering with constrained von Mises-Fisher models
    Watanabe, Kazuho
    Wu, Hsiang-Yun
    Takahashi, Shigeo
    Fujishiro, Issei
    INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [33] Von Mises-Fisher mixture model of the diffusion ODF
    McGraw, Tim
    Vemuri, Baba C.
    Yezierski, Bob
    Mareci, Thomas
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 65 - +
  • [34] Score matching based assumed density filtering with the von Mises-Fisher distribution
    Bukal, Mario
    Markovic, Ivan
    Petrovic, Ivan
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 433 - 438
  • [35] Parameter Estimation for von Mises-Fisher Mixture Model via Gaussian Distribution
    Yasutomi, Suguru
    Tanaka, Toshihisa
    2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2014,
  • [36] Modelling Room Reverberation Directivity using von Mises-Fisher Mixture Distribution
    Bastine, Amy
    Abhayapala, Thushara D.
    Zhang, Jihui
    Sun, Huiyuan
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 694 - 700
  • [37] Remarks on a parameter estimation for von Mises-Fisher distributions
    Baricz, Arpad
    COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 891 - 894
  • [38] Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data
    Roge, Rasmus E.
    Madsen, Kristoffer H.
    Schmidt, Mikkel N.
    Morup, Morten
    NEURAL COMPUTATION, 2017, 29 (10) : 2712 - 2741
  • [39] Scaled von Mises-Fisher Distributions and Regression Models for Paleomagnetic Directional Data
    Scealy, J. L.
    Wood, Andrew T. A.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (528) : 1547 - 1560
  • [40] INFINITE DIVISIBILITY OF VON MISES-FISHER DISTRIBUTION FOR ALL VALUES OF PARAMETER IN ALL DIMENSIONS
    KENT, JT
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 35 (SEP) : 359 - 384