Exploiting ion-mobility mass spectrometry for unraveling proteome complexity

被引:1
|
作者
Perchepied, Stan [1 ]
Zhou, Zhuoheng [1 ]
Mitulovic, Goran [2 ]
Eeltink, Sebastiaan [1 ,3 ]
机构
[1] Vrije Univ Brussel VUB, Dept Chem Engn, Brussels, Belgium
[2] Bruker Daltonics Inc, Vienna, Austria
[3] Pl Laan 2, B-1050 Brussels, Belgium
关键词
clinical proteomics; data-independent acquisition; parallel accumulation-serial fragmentation; single-cell analysis; TIMS-TOF; IDENTIFICATION; FUNDAMENTALS; SEPARATION; ELECTROPHORESIS; SENSITIVITY; RESOLUTION; PROTEINS; SEQUENCE; GLYCAN; POWER;
D O I
10.1002/jssc.202300512
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ion mobility spectrometry-mass spectrometry (IMS-MS) is experiencing rapid growth in proteomic studies, driven by its enhancements in dynamic range and throughput, increasing the quantitation precision, and the depth of proteome coverage. The core principle of ion mobility spectrometry is to separate ions in an inert gas under the influence of an electric field based on differences in drift time. This minireview provides an introduction to IMS operation modes and a description of advantages and limitations is presented. Moreover, the principles of trapped IMS-MS (TIMS-MS), including parallel accumulation-serial fragmentation are discussed. Finally, emerging applications linked to TIMS focusing on sample throughput (in clinical proteomics) and sensitivity (single-cell proteomics) are reviewed, and the possibilities of intact protein analysis are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Obtaining the Dielectric Constant of Polymers from Doubly Charged Species in Ion-Mobility Mass Spectrometry
    Kokubo, Shinsuke
    Vana, Philipp
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2017, 218 (17)
  • [32] Rapid separation of phenylthiohydantoin amino acids: ambient pressure ion-mobility mass spectrometry (IMMS)
    Steiner, WE
    Clowers, BH
    Hill, HH
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 375 (01) : 99 - 102
  • [33] Unveiling anion-induced folding in tripodal imidazolium receptors by ion-mobility mass spectrometry
    Vicent, Cristian
    Valls, Adriana
    Escorihuela, Jorge
    Altava, Belen
    Luis, Santiago
    CHEMICAL COMMUNICATIONS, 2021, 57 (69) : 8616 - 8619
  • [34] An economical setup for atmospheric pressure chemical ionization drift tube ion-mobility mass spectrometry
    Raju, Chamarthi Maheswar
    Buchowiecki, Krzysztof
    Urban, Pawel L.
    ANALYTICA CHIMICA ACTA, 2023, 1268
  • [35] Rapid separation of phenylthiohydantoin amino acids: ambient pressure ion-mobility mass spectrometry (IMMS)
    Wes E. Steiner
    Brian H. Clowers
    Herbert H. Hill
    Analytical and Bioanalytical Chemistry, 2003, 375 : 99 - 102
  • [36] Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling
    Tomlinson, Lauren J.
    Batchelor, Matthew
    Sarsby, Joscelyn
    Byrne, Dominic P.
    Brownridge, Philip J.
    Bayliss, Richard
    Eyers, Patrick A.
    Eyers, Claire E.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2022, 33 (03) : 420 - 435
  • [37] Molecular Insights into the Thermal Stability of mAbs with Variable-Temperature Ion-Mobility Mass Spectrometry
    Pacholarz, Kamila J.
    Peters, Shirley J.
    Garlish, Rachel A.
    Henry, Alistair J.
    Taylor, Richard J.
    Humphreys, David P.
    Barran, Perdita E.
    CHEMBIOCHEM, 2016, 17 (01) : 46 - 51
  • [38] Dramatic signal reduction in ion-mobility spectrometry by residues of solvents
    Koole, A
    Luo, Y
    Franke, JP
    de Zeeuw, RA
    JOURNAL OF ANALYTICAL TOXICOLOGY, 1998, 22 (03) : 191 - 196
  • [39] Sparse Approximation of Ion-Mobility Spectrometry Profiles by Binomial Splines
    Koshino, Yuki
    Kamada, Masaru
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 654 - 657
  • [40] Application of Ion-Mobility Spectrometry to Chemical Analysis at High Concentrations
    Takaya, Kazunari
    Shibata, Nobuyuki
    ATMOSPHERE, 2022, 13 (09)