A flexible optimization study on air-cooled battery thermal management system by considering of system volume and cooling performance

被引:6
|
作者
Lu, Hao [1 ,2 ]
Tang, Xiaole [1 ]
机构
[1] Xinjiang Univ, Sch Elect Engn, Lab Clean Energy, Urumqi 830047, Peoples R China
[2] Xinjiang Univ, Sch Future Technol, Urumqi 830047, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery thermal management; Air cooling; Multi-objective optimization; Shortcut computation model; LITHIUM-ION BATTERY; DESIGN OPTIMIZATION; FLOW CONFIGURATION; GENETIC ALGORITHM; PACK;
D O I
10.1016/j.est.2023.108527
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
When the battery temperature exceeds the normal range, the battery efficiency performance, and life will be significantly reduced, and the battery may even explode. Therefore, an optimal battery thermal management system is required to dissipate heat efficiently. The existing research focuses on the structural design to reduce the maximum temperature of the system. However, the volume of the cooling system is also important for electric vehicle design, which has received little attention. In this study, a new flexible optimization strategy for a battery thermal management system is proposed, which is a hybrid of system volume and cooling performance and can determine the appropriate optimized structure according to the engineering applications. The proposed method belongs to four steps: optimization system design, establishment of shortcut computation codes, multiobjective optimization and comprehensive fuzzy decision making. The numerical simulation based on computational fluid dynamics (CFD) is used to verify the cooling performance of the optimized system. Compared with the three existing designs of battery thermal management system from previous literatures, the volume is reduced by a maximum of 13.01 %. In the process of stable heat generation, the maximum temperature difference decreased by 65.79 %, 40.65 %, and 63.69 %, and the temperature uniformity increased by 65.87 %, 34.93 %, and 60.80 %, respectively. In the unsteady heat generation of the battery pack, at the discharge rate of 5C, the maximum temperature difference decreases by 2.28 K, and the maximum temperature difference and temperature uniformity decrease by 57.11 % and 49.15 %, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Multiobjective optimization of air-cooled battery thermal management system based on heat dissipation model
    Jiahui Chen
    Xiaobo Zhao
    Biao Wang
    Chenghao Zhang
    Dongji Xuan
    Ionics, 2021, 27 : 1307 - 1322
  • [22] Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study
    Chen, Kai
    Li, Zeyu
    Chen, Yiming
    Long, Shuming
    Hou, Junsheng
    Song, Mengxuan
    Wang, Shuangfeng
    ENERGIES, 2017, 10 (10):
  • [23] Optimization design of the forced air-cooled battery thermal management system with a stepped divergence plenum
    Suo, Yaohong
    Tang, Chengbo
    Yang, Huai
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [24] Multiobjective optimization of air-cooled battery thermal management system based on heat dissipation model
    Chen, Jiahui
    Zhao, Xiaobo
    Wang, Biao
    Zhang, Chenghao
    Xuan, Dongji
    IONICS, 2021, 27 (03) : 1307 - 1322
  • [25] Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern
    Chen, Kai
    Wu, Weixiong
    Yuan, Fang
    Chen, Lin
    Wang, Shuangfeng
    ENERGY, 2019, 167 : 781 - 790
  • [26] Improving the thermal-hydraulic performance of air-cooled battery thermal management system by flow splitters
    Gao, Chen
    Song, Kewei
    He, Rong
    Qi, Yue
    Gu, Bingdong
    Su, Mei
    An, Zhoujian
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [27] Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement
    Chen, Kai
    Song, Mengxuan
    Wei, Wei
    Wang, Shuangfeng
    ENERGY, 2018, 145 : 603 - 613
  • [28] Numerical investigation of cooling performance of a novel air-cooled thermal management system for cylindrical Li-ion battery module
    Kausthubharam
    Koorata, Poornesh K.
    Chandrasekaran, Neelakandan
    APPLIED THERMAL ENGINEERING, 2021, 193
  • [29] Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system
    Chen, Kai
    Chen, Yiming
    Li, Zeyu
    Yuan, Fang
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 393 - 401
  • [30] Performance analysis of a wet pad assisted air-cooled battery thermal management system with varying number of battery cells
    Yan, Huaxia
    Ma, Xiaona
    Chen, Yi
    Tao, Qiuhua
    Song, Mengjie
    APPLIED THERMAL ENGINEERING, 2025, 259