On asymptotically almost periodic solutions to the Navier-Stokes equations in hyperbolic manifolds

被引:3
|
作者
Xuan, Pham Truong [1 ]
Van, Nguyen Thi [2 ]
机构
[1] Vietnam Natl Univ, VNU Univ Educ, Fac Pedag, 144 Xuan Thuy, Hanoi, Vietnam
[2] Thuyloi Univ, Fac Informat Technol, Dept Math, 175 Tay Son, Hanoi, Vietnam
关键词
Navier-Stokes equations; hyperbolic manifold; deformation tensor; asymptotically almost periodic functions (resp; solutions); exponential decay (stability); NONUNIQUENESS; FORMULATION; FLOWS;
D O I
10.1007/s11784-023-01074-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the forward asymptotically almost periodic (AAP-) mild solutions of Navier-Stokes equations on the real hyperbolic manifold M = H-d(R) with dimension d ?. 2. Using the dispersive and smoothing estimates for the Stokes equation, we invoke the Massera-type principle to prove the existence and uniqueness of the AAP-mild solution for the inhomogeneous Stokes equations in L-p(G(TM))) space with 1 < p d. Next, we establish the existence and uniqueness of the small AAP-mild solutions of the Navier-Stokes equations using the fixed point argument, and the results of inhomogeneous Stokes equations. The asymptotic behaviour (exponential decay and stability) of these small solutions is also related. This work, together with our recent work (Xuan et al. in J Math Anal Appl 517(1):1-19, 2023), provides a full existence and asymptotic behaviour of AAP-mild solutions of Navier-Stokes equations in Lp(G(TM))) spaces for all p > 1.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] ASYMPTOTICALLY STABLE ATTRACTING SETS IN THE NAVIER-STOKES EQUATIONS
    KLOEDEN, PE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (01) : 37 - 52
  • [42] WEAK TIME-PERIODIC SOLUTIONS TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Cai, Hong
    Tan, Zhong
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 499 - 513
  • [43] A remark on smooth solutions or the weakly compressible periodic Navier-Stokes equations
    Gallagher, I
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2000, 40 (03): : 525 - 540
  • [44] ON A CRITERION FOR APPROXIMATING TIME-PERIODIC SOLUTIONS TO THE NAVIER-STOKES EQUATIONS
    TITI, ES
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (01): : 41 - 43
  • [45] On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Thien Binh Nguyen
    Shiue, Ming-Cheng
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 607 - 638
  • [46] ON THE REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS
    Pata, Vittorino
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 747 - 761
  • [47] Exact solutions of the Navier-Stokes equations
    Ross, RA
    ADVANCES IN FLUID MECHANICS III, 2000, 26 : 421 - 424
  • [48] On time periodic solutions, asymptotic stability and bifurcations of Navier-Stokes equations
    Chun-Hsiung Hsia
    Chang-Yeol Jung
    Thien Binh Nguyen
    Ming-Cheng Shiue
    Numerische Mathematik, 2017, 135 : 607 - 638
  • [49] Smooth solutions of the Navier-Stokes equations
    Pokhozhaev, S. I.
    SBORNIK MATHEMATICS, 2014, 205 (02) : 277 - 290
  • [50] On decay of solutions to the Navier-Stokes equations
    Schonbek, ME
    APPLIED NONLINEAR ANALYSIS, 1999, : 505 - 512