Modification of some scalarization approaches for multiobjective optimization

被引:0
|
作者
Khorasani, Vahid Amiri [1 ]
Khorram, Esmaile [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, Iran
关键词
Multiobjective optimization; proper efficient solutions; the feasible-value constraint approach; the weighted-constraint approach; rocket injector design; PROPER EFFICIENCY; VECTOR OPTIMIZATION; DEFINITION; RESPECT; SURFACE; POINTS; FRONT;
D O I
10.1051/ro/2023040
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose revisions of two existing scalarization approaches, namely the feasible-value constraint and the weighted constraint. These methods do not easily provide results on proper efficient solutions of a general multiobjective optimization problem. By proposing some novel modifications for these methods, we derive some interesting results concerning proper efficient solutions. These scalarization approaches need no convexity assumption of the objective functions. We also demonstrate the efficiency of the proposed method using numerical experiments. In particular, a rocket injector design problem involving four objective functions illustrates the performance of the proposed method.
引用
收藏
页码:1027 / 1044
页数:18
相关论文
共 50 条
  • [11] Slack-based generalized Tchebycheff norm scalarization approaches for solving multiobjective optimization problems
    Hoseinpoor, N.
    Ghaznavi, M.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3151 - 3169
  • [12] Nonlinear scalarization in multiobjective optimization with a polyhedral ordering cone
    Gutierrez, Cesar
    Huerga, Lidia
    Novo, Vicente
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2018, 25 (03) : 763 - 779
  • [13] Robustness to uncertain optimization using scalarization techniques and relations to multiobjective optimization
    Wei, Hong-Zhi
    Chen, Chun-Rong
    Li, Sheng-Jie
    APPLICABLE ANALYSIS, 2019, 98 (05) : 851 - 866
  • [14] A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems
    Fereshteh Akbari
    Mehrdad Ghaznavi
    Esmaile Khorram
    Journal of Optimization Theory and Applications, 2018, 178 : 560 - 590
  • [15] The Power of the Weighted Sum Scalarization for Approximating Multiobjective Optimization Problems
    Cristina Bazgan
    Stefan Ruzika
    Clemens Thielen
    Daniel Vanderpooten
    Theory of Computing Systems, 2022, 66 : 395 - 415
  • [16] Scalarization Methods in Multiobjective Optimization, Robustness, Risk Theory and Finance
    Khan, Akhtar A.
    Koebis, Elisabeth
    Tammer, Christiane
    MULTIPLE CRITERIA DECISION MAKING IN FINANCE, INSURANCE AND INVESTMENT, 2015, : 135 - 157
  • [17] The Power of the Weighted Sum Scalarization for Approximating Multiobjective Optimization Problems
    Bazgan, Cristina
    Ruzika, Stefan
    Thielen, Clemens
    Vanderpooten, Daniel
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (01) : 395 - 415
  • [18] The modified objective-constraint scalarization approach for multiobjective optimization problems
    Hoseinpoor, Narges
    Ghaznavi, Mehrdad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05): : 1403 - 1418
  • [19] A Revised Pascoletti-Serafini Scalarization Method for Multiobjective Optimization Problems
    Akbari, Fereshteh
    Ghaznavi, Mehrdad
    Khorram, Esmaile
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (02) : 560 - 590
  • [20] Optimality Conditions via Scalarization for Approximate Quasi Efficiency in Multiobjective Optimization
    Ghaznavi, Mehrdad
    FILOMAT, 2017, 31 (03) : 671 - 680