Bio-hydrogen production through microbial electrolysis cell: Structural components and influencing factors

被引:67
|
作者
Gautam, Rahul [1 ,3 ]
Nayak, Jagdeep K. [2 ]
Ress, Neil V. [3 ]
Steinberger-Wilckens, Robert [3 ]
Ghosh, Uttam Kumar [1 ]
机构
[1] IIT Roorkee, Dept Polymer & Proc Engn, Roorkee, India
[2] Sultan Qaboos Univ, Dept Civil & Architecture Engn, Muscat, Oman
[3] Univ Birmingham, Sch Chem Engn, Birmingham, England
关键词
Bio-electrochemical systems; Microbial electrolysis cell; Bio hydrogen; MEC Reactor configuration; MEC parameter optimization; Electrode materials; Coulombic efficiency; Hydrogen recovery; WASTE-WATER TREATMENT; PROTON-EXCHANGE MEMBRANES; ACIDOGENIC BIOHYDROGEN PRODUCTION; DIFFERENT CATHODE MATERIALS; FUEL-CELL; ELECTRICITY-GENERATION; DARK FERMENTATION; POWER-GENERATION; H-2; PRODUCTION; BIOELECTROCHEMICAL SYSTEMS;
D O I
10.1016/j.cej.2022.140535
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial electrolysis cell (MEC) is a significantly sustainable bio-electrochemical system for biological hydrogen production. MEC is also regarded as an environmentally friendly method for producing clean biohydrogen from a variety of waste organic matters and for its low greenhouse gas emissions. This technology involves the oxidation of organic matter at the anode and the reduction of proton at the cathode under the nominal external voltage supply. However, bio-hydrogen production efficiency and operating costs of MEC still need further optimization to implement in large-scale applications. For optimization, a detailed explanation of MEC components and major operational parameters should be available. This review discusses the principle, main components, and major operational parameters of MEC for significant performance. It also provides a brief overview of types of MECs, reactor configuration, and their advantages. Thermodynamically important aspects of the MEC for efficient performance are also discussed. It also conferred the critical structural components which are essential for the functioning MECs. Furthermore the performance evaluating parameters and indices for the biohydrogen yield and MEC performance are also addressed. Additionally, crucial influencing factors that affect the MEC perfor-mance such as microorganism, methanogens and their inhibition, various electrode materials, membranes and different substrates are also discussed. Afterwards needs and challenges for future development of the MEC technology are highlighted and suggested. The review aims to put forward the fundamental understandings of MEC technology to the research fraternity for further advancement for the large-scale applications.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Omics Application of Bio-Hydrogen Production Through Green Alga Chlamydomonas reinhardtii
    Xu, Lili
    Fan, Jianhua
    Wang, Quanxi
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (AUG)
  • [32] Recycling of shrub landscaping waste: Exploration of bio-hydrogen production potential and optimization of photo-fermentation bio-hydrogen production process
    Yue, Tian
    Jiang, Danping
    Zhang, Zhiping
    Zhang, Yang
    Li, Yameng
    Zhang, Tian
    Zhang, Quanguo
    BIORESOURCE TECHNOLOGY, 2021, 331
  • [33] A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell
    Wan, Li-Li
    Li, Xiao-Jing
    Zang, Guo-Long
    Wang, Xin
    Zhang, Yue-Yong
    Zhou, Qi-Xing
    RSC ADVANCES, 2015, 5 (100) : 82276 - 82281
  • [34] Seed sludge pretreatment for fermentative bio-hydrogen production
    Zhou Q.
    Zou Z.
    Xie L.
    Luo G.
    Tongji Daxue Xuebao/Journal of Tongji University, 2010, 38 (07): : 1029 - 1035
  • [35] Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation
    Argun, Hidayet
    Kargi, Fikret
    Kapdan, Ilgi K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) : 2195 - 2200
  • [36] Hydrogen production from wastewater using a microbial electrolysis cell
    Jia, Yu Hong
    Choi, Ji Youn
    Ryu, Jae Hun
    Kim, Cho Hui
    Lee, Woo Kyung
    Hung Thuan Tran
    Zhang, Rui Hong
    Ahn, Dae Hee
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (06) : 1854 - 1859
  • [37] Commercial materials as cathode for hydrogen production in microbial electrolysis cell
    Farhangi, Sara
    Ebrahimi, Sirous
    Niasar, Mojtaba Shariati
    BIOTECHNOLOGY LETTERS, 2014, 36 (10) : 1987 - 1992
  • [38] Clean hydrogen production in a full biological microbial electrolysis cell
    Jafary, Tahereh
    Daud, Wan Ramli Wan
    Ghasemi, Mostafa
    Abu Bakar, Mimi Hani
    Sedighi, Mehdi
    Kim, Byung Hong
    Carmona-Martínez, Alessandro A.
    Jahim, Jamaliah Md
    Ismail, Manal
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (58) : 30524 - 30531
  • [39] Commercial materials as cathode for hydrogen production in microbial electrolysis cell
    Sara Farhangi
    Sirous Ebrahimi
    Mojtaba Shariati Niasar
    Biotechnology Letters, 2014, 36 : 1987 - 1992
  • [40] Hydrogen Production and Wastewater Treatment in a Microbial Electrolysis Cell with a Biocathode
    Xu, Yuan
    Jiang, Yangyue
    Chen, Yingwen
    Zhu, Shemin
    Shen, Shubao
    WATER ENVIRONMENT RESEARCH, 2014, 86 (07) : 649 - 653