A systematic literature survey on skin disease detection and classification using machine learning and deep learning

被引:3
|
作者
Yadav, Rashmi [1 ]
Bhat, Aruna [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi, India
关键词
Skin diseases; CNN; Deep learning; Systematic literature; Machine learning; SEGMENTATION; RECOGNITION; FRAMEWORK;
D O I
10.1007/s11042-024-18119-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The world population is growing very fast and the lifestyle of human beings is changing with time and place. So, there is a need for disease management which includes disease diagnosis, its detection and classification, cure and lastly for future disease prevention. The outermost protective layer of a human body is the skin. Skin not only impacts a person's health but also psychologically impacts one's life. Computer-aided systems are very helpful in skin disease detection and classification and their application is growing rapidly in healthcare. This literature review paper aims to help the researchers to get a synthesized and appropriate information for the same. We have included papers from 2021 to 2023 for the review from the Scopus database. 45 studies are selected for the review of which 32 studies use deep learning techniques, 11 use machine learning techniques and 2 studies use a hybrid approach. The studies are compared on various parameters like models, datasets, and performance metrics. The work also identified some of the challenges like dealing with noise and also explained disease symptoms.
引用
收藏
页码:78093 / 78124
页数:32
相关论文
共 50 条
  • [41] A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
    Khan, Usman
    Khan, Muhammad Khalid
    Latif, Muhammad Ayub
    Naveed, Muhammad
    Alam, Muhammad Mansoor
    Khan, Salman A.
    Su'ud, Mazliham Mohd
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 2967 - 3000
  • [42] Leaf disease detection using machine learning and deep learning: Review and challenges
    Sarkar, Chittabarni
    Gupta, Deepak
    Gupta, Umesh
    Hazarika, Barenya Bikash
    APPLIED SOFT COMPUTING, 2023, 145
  • [43] Automatic Eye Disease Detection Using Machine Learning and Deep Learning Models
    Badah, Nouf
    Algefes, Amal
    AlArjani, Ashwaq
    Mokni, Raouia
    PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022, 2023, 475 : 773 - 787
  • [44] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [45] Early Detection of Parkinson's Disease Using Deep Learning and Machine Learning
    Wang, Wu
    Lee, Junho
    Harrou, Fouzi
    Sun, Ying
    IEEE ACCESS, 2020, 8 : 147635 - 147646
  • [46] Crop Seeds Classification Using Traditional Machine Learning and Deep Learning Techniques: A Comprehensive Survey
    Vipin Kumar
    Prem Shankar Singh Aydav
    Sonajharia Minz
    SN Computer Science, 5 (8)
  • [47] PLANT DISEASE CLASSIFICATION USING AI-SPL DEEP LEARNING AND MACHINE LEARNING
    Gupta, Leena
    Vyas, Vaibhav
    3C TECNOLOGIA, 2023, 12 (02): : 65 - 76
  • [48] AI-Based Crop Disease Detection: Evaluation of Wheat Rust Disease Detection and Classification Using Deep Learning and Machine Learning Approaches
    Akinosun, Temitayo
    Nibouche, Omar
    2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [49] On the Automatic Detection and Classification of Skin Cancer Using Deep Transfer Learning
    Fraiwan, Mohammad
    Faouri, Esraa
    SENSORS, 2022, 22 (13)
  • [50] Brain tumor detection and classification using machine learning: a comprehensive survey
    Amin, Javaria
    Sharif, Muhammad
    Haldorai, Anandakumar
    Yasmin, Mussarat
    Nayak, Ramesh Sundar
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) : 3161 - 3183