Effects of PET and Gallic Acid on Growth, Photosynthesis, and Oxidative Stress of Microcystis aeruginosa

被引:2
|
作者
Wang, Tiantian [1 ]
Liu, Haicheng [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Environm Sci & Engn, Suzhou 215000, Peoples R China
来源
WATER AIR AND SOIL POLLUTION | 2024年 / 235卷 / 02期
关键词
Microplastics; Allelochemicals; Combined toxicity; Cyanobacteria; MICROPLASTIC INGESTION; ALGAE; INACTIVATION;
D O I
10.1007/s11270-024-06970-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Utilizing the allelopathic effect of plants to inhibit algae growth has gained significant attention from researchers in recent years. However, there are large amounts of microplastics in the aquatic environment, which may influence the inhibitory effects of allelochemicals on algae. Consequently, this research aimed to examine the individual and combined toxicity of gallic acid (GA) and polyethylene glycol terephthalate (PET) microplastics on Microcystis aeruginosa. At a concentration of 50 mg/L, PET significantly enhanced algal cell growth and chlorophyll a synthesis, while inducing oxidative stress without damaging the cell membrane. On the other hand, low concentrations of GA promote algal cell growth. However, high concentrations of GA not only inhibit growth and photosynthesis but also result in cellular abnormalities and severe oxidative damage, as well as membrane disruption. Moreover, it was observed that the exposure of PET diminished the toxicity of GA to M. aeruginosa. The combined exposure to GA and PET resulted in a slight increase in chlorophyll a content, as well as phycocyanin (PC), alloxyphycocyanin (APC), and phycoerythrin (PE) content, along with maximum photochemical efficiency (Fv/Fm), compared to GA exposure alone. In the combined system of GA and PET, the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) were lower than those in the single GA system. Additionally, both systems showed a degree of improvement compared to the control group. Scanning electron microscopy (SEM) observed that the presence of PET resulted in reduced damage to algal cells compared to exposure to GA alone. This research establishes a foundation for understanding the synergistic impacts of allelochemicals and microplastics on M. aeruginosa, thereby providing a reference for managing cyanobacteria in water blooms.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa
    Weimin Chen
    Qingmin Zhang
    Shugui Dai
    Journal of Applied Phycology, 2009, 21 : 701 - 706
  • [42] Effects of humic and fulvic acids on the growth of Microcystis aeruginosa
    Ohkubo, N
    Yagi, O
    Okada, M
    ENVIRONMENTAL TECHNOLOGY, 1998, 19 (06) : 611 - 617
  • [43] Allelopathic effects of different macrophytes on the growth of Microcystis aeruginosa
    Li, FM
    Hu, HY
    ALLELOPATHY JOURNAL, 2005, 15 (01): : 145 - 151
  • [44] Effects of Nutrients on the Growth of Microcystis aeruginosa and Bacteria in the Phycosphere
    Lü P.
    Li H.-L.
    Xu Y.
    Zheng X.-X.
    Huang Z.-H.
    Wang C.
    Xu S.-J.
    Zhuang X.-L.
    Huanjing Kexue/Environmental Science, 2022, 43 (10): : 4502 - 4510
  • [45] Effects of neodymium on growth and physiological characteristics of Microcystis aeruginosa
    Wang Yingjun
    Jin Hangbiao
    Deng Shihuai
    Chen Yan
    Yu You
    JOURNAL OF RARE EARTHS, 2011, 29 (04) : 388 - 395
  • [46] Inhibitory effects of Pontederia cordata on the growth of Microcystis aeruginosa
    Qian, Yanping
    Xu, Ning
    Liu, Juan
    Tian, Runan
    WATER SCIENCE AND TECHNOLOGY, 2018, (01) : 99 - 107
  • [47] Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake
    Ghaffar, Sajeela
    Stevenson, R. Jan
    Khan, Zahiruddin
    PLOS ONE, 2017, 12 (03):
  • [48] Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa
    Qian, Haifeng
    Yu, Shuqiong
    Sun, Zhengqi
    Xie, Xiucai
    Liu, Weiping
    Fu, Zhengwei
    AQUATIC TOXICOLOGY, 2010, 99 (03) : 405 - 412
  • [49] Effects of okadaic acid on Pyropia yezoensis: Evidence from growth, photosynthesis, oxidative stress and transcriptome analysis
    Wu, Ruolin
    Qiu, Jiangbing
    Tang, Xianghai
    Li, Aifeng
    Yang, Yongmeng
    Zhu, Xinyu
    Zheng, Xianyao
    Yang, Wenke
    Wu, Guangyao
    Wang, Guixiang
    JOURNAL OF HAZARDOUS MATERIALS, 2025, 491
  • [50] The effects of gallic acid on inflammation and oxidative stress in valproic acid-induced hepatotoxicity in rats
    Afshari E.
    Nouri A.
    Heidarian E.
    Comparative Clinical Pathology, 2023, 32 (3) : 441 - 449