In this article, a Crank-Nicolson fully discrete finite element scheme of modified finite difference streamlined diffusion (MFDSD) method is developed and investigated for nonlinear convection-dominated diffusion equation, which can get rid of the numerical oscillation appeared in Galerkin finite element method (FEM). The supercloseness and superconvergence estimates of order O(h(2) + iota(2)) in H-1 norm are derived without the restriction between the time step iota and the mesh size h. Firstly, a time discrete system is established to split the error into two parts -the temporal error and spatial error, and the regularity of the solution of the time discrete system is deduced with the help of mathematical induction. Then the numerical solution is bounded in L-infinity norm by the spatial error which leads to the above unconditional supercloseness property, and the global superconvergence result is deduced through interpolation post-processing technique. Lastly, two numerical examples are provided to verify the correctness of the theoretical analysis and to show the big advantage of the proposed MFDSD method over the Galerkin FEM.
机构:
Huaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R ChinaHuaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R China
Lai, Baowei
Sun, Lanxin
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R ChinaHuaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R China
Sun, Lanxin
Yang, Wenhuan
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R ChinaHuaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R China
Yang, Wenhuan
Yu, Lixiang
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R ChinaHuaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R China
Yu, Lixiang
Ni, Zelian
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Kehua Digital Energy Tech Co Ltd, Xiamen 361013, Peoples R ChinaHuaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R China
Ni, Zelian
Weng, Zhifeng
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R ChinaHuaqiao Univ, Fujian Prov Univ, Sch Math Sci, Key Lab Computat Sci, Quanzhou 362021, Peoples R China
机构:
Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USAPurdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
Leng, Yu
Tian, Xiaochuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, San Diego, CA 92093 USAPurdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
Tian, Xiaochuan
Demkowicz, Leszek
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USAPurdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
Demkowicz, Leszek
Gomez, Hector
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USAPurdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
Gomez, Hector
Foster, John T.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USAPurdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Hebei Univ Architecture, Coll Math & Phys, Zhangjiakou 075000, Hebei, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Xie, Cong
Wang, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Wang, Gang
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China