Heterogeneous Graph Neural Network via Knowledge Relations for Fake News Detection

被引:4
|
作者
Xie, Bingbing [1 ,2 ]
Ma, Xiaoxiao [1 ]
Wu, Jia [1 ]
Yang, Jian [1 ]
Xue, Shan [1 ]
Fan, Hao [2 ]
机构
[1] Macquarie Univ, Sch Comp, Sydney, NSW, Australia
[2] Wuhan Univ, Sch Informat Management, Wuhan, Hubei, Peoples R China
基金
澳大利亚研究理事会;
关键词
Anomaly detection; Fake news detection; Knowledge graph; Graph mining;
D O I
10.1145/3603719.3603736
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of fake news in social media has been recognized as a severe problem for society, and substantial attempts have been devoted to fake news detection to alleviate the detrimental impacts. Knowledge graphs (KGs) comprise rich factual relations among real entities, which could be utilized as ground-truth databases and enhance fake news detection. However, most of the existing methods only leveraged natural language processing and graph mining techniques to extract features of fake news for detection and rarely explored the ground knowledge in knowledge graphs. In this work, we propose a novel Heterogeneous Graph Neural Network via Knowledge Relations for Fake News Detection (HGNNR4FD). The devised framework has four major components: 1) A heterogeneous graph (HG) built upon news content, including three types of nodes, i.e., news, entities, and topics, and their relations. 2) A KG that provides the factual basis for detecting fake news by generating embeddings via relations in the KG. 3) A novel attention-based heterogeneous graph neural network that can aggregate information from HG and KG, and 4) a fake news detector, which is capable of identifying fake news based on the news embeddings generated by HGNNR4FD. We further validate the performance of our method by comparison with seven state-of-art baselines and verify the effectiveness of the components through a thorough ablation analysis. From the results, we empirically demonstrate that our framework achieves superior results and yields improvement over the baselines regarding evaluation metrics of accuracy, precision, recall, and F1-score on four real-world datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] GETAE: Graph Information Enhanced Deep Neural NeTwork Ensemble ArchitecturE for fake news detection
    Truica, Ciprian-Octavian
    Apostol, Elena-Simona
    Marogel, Marius
    Paschke, Adrian
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 275
  • [22] Fake News Detection with Heterogenous Deep Graph Convolutional Network
    Kang, Zhezhou
    Cao, Yanan
    Shang, Yanmin
    Liang, Tao
    Tang, Hengzhu
    Tong, Lingling
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 408 - 420
  • [23] Improving fake news detection with domain-adversarial and graph-attention neural network
    Yuan, Hua
    Zheng, Jie
    Ye, Qiongwei
    Qian, Yu
    Zhang, Yan
    DECISION SUPPORT SYSTEMS, 2021, 151
  • [24] Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks
    Zhang, Jiawei
    Dong, Bowen
    Yu, Philip S.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1259 - 1266
  • [25] Collaborative representation learning for nodes and relations via heterogeneous graph neural network
    Li, Weimin
    Ni, Lin
    Wang, Jianjia
    Wang, Can
    KNOWLEDGE-BASED SYSTEMS, 2022, 255
  • [26] KAPALM: Knowledge grAPh enhAnced Language Model for Fake News Detection
    Ma, Jing
    Chen, Chen
    Hou, Chunyan
    Yuan, Xiaojie
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 3999 - 4009
  • [27] An Interpretable Fake News Detection Method Based on Commonsense Knowledge Graph
    Gao, Xiang
    Chen, Weiqing
    Lu, Liangyu
    Cui, Ying
    Dai, Xiang
    Dai, Lican
    Wang, Kan
    Shen, Jing
    Wang, Yue
    Wang, Shengze
    Yu, Zihan
    Liu, Haibo
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [28] OPCNN-FAKE: Optimized Convolutional Neural Network for Fake News Detection
    Saleh, Hager
    Alharbi, Abdullah
    Alsamhi, Saeed Hamood
    IEEE ACCESS, 2021, 9 (09): : 129471 - 129489
  • [29] Evidence-aware Fake News Detection with Graph Neural Networks
    Xu, Weizhi
    Wu, Junfei
    Liu, Qiang
    Wu, Shu
    Wang, Liang
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2501 - 2510
  • [30] Temporal Enhanced Multimodal Graph Neural Networks for Fake News Detection
    Qu, Zhibo
    Zhou, Fuhui
    Song, Xi
    Ding, Rui
    Yuan, Lu
    Wu, Qihui
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 13