Digital twins for cutting processes

被引:15
|
作者
Bergs, T. [1 ,2 ]
Biermann, D. [3 ]
Erkorkmaz, K. [4 ]
M'Saoubi, R. [5 ,6 ]
机构
[1] Rhein Westfal TH Aachen, Lab Machine Tools & Prod Engn WZL, Campus Blvd 30, Aachen, Germany
[2] Fraunhofer Inst Prod Technol IPT, Steinbachstr 17, D-52074 Aachen, Germany
[3] TU Dortmund Univ, Inst Machining Technol ISF, Baroper Str 303, D-44227 Dortmund, Germany
[4] Univ Waterloo, Mech & Mechatron Engn Dept, 200 Univ Ave W, Waterloo, ON, Canada
[5] Seco Tools AB, R&D Mat & Technol Dev, SE-73782 Fagersta, Sweden
[6] Lund Univ, Dept Mech Engn Sci, Div Prod & Mat Engn, Naturvetarvagen 18, S-22362 Lund, Sweden
关键词
Cutting; Digital twin; Digital shadow; INDUCED RESIDUAL-STRESSES; POSITION-DEPENDENT DYNAMICS; ENHANCED ANALYTICAL-MODEL; TOOL WEAR; SURFACE INTEGRITY; MACHINING PROCESS; PART I; PREDICTION; SIMULATION; PERFORMANCE;
D O I
10.1016/j.cirp.2023.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Collecting and utilizing data in industrial production are becoming increasingly important. One promising approach to utilize data is the concept of digital twin (DT). DTs are virtual representations of physical assets, updated by real data and enhanced by models. This paper provides an overview of DTs for cutting processes. After giving a definition, we discuss requirements derived from representative use cases. As process models are central for DT creation, we present an overview of the latest research as well as conditions for how it can be implemented in industrial environments. The paper concludes with main challenges for future research.(c) 2023 Published by Elsevier Ltd on behalf of CIRP.
引用
收藏
页码:541 / 567
页数:27
相关论文
共 50 条
  • [1] Using Deterministic Models and Neural Networks in Digital Twins of Metal Cutting Processes
    V. P. Lapshin
    I. A. Turkin
    V. E. Gvindzhilia
    I. O. Dudinov
    D. O. Gamaleev
    Russian Engineering Research, 2024, 44 (11) : 1588 - 1592
  • [2] Digital Twins of Processes of Thermomechanical Treatment of Steel
    Rudskoy, A. I.
    Kolbasnikov, N. G.
    METAL SCIENCE AND HEAT TREATMENT, 2020, 62 (1-2) : 3 - 10
  • [3] Digital Twins of Business Processes: A Research Manifesto
    Fornari, Fabrizio
    Compagnucci, Ivan
    De Donato, Massimo Callisto
    Bertrand, Yannis
    Beyel, Harry H.
    Carrion, Emilio
    Franceschetti, Marco
    Groher, Wolfgang
    Grueger, Joscha
    Kilic, Emre
    Koschmider, Agnes
    Leotta, Francesco
    Li, Chiao-Yun
    Lugaresi, Giovani
    Malburg, Lukas
    Mangler, Juergen
    Mecella, Massimo
    Pastor, Oscar
    Riss, Uwe
    Seiger, Ronny
    Serral, Estefania
    Torres, Victoria
    Valderas, Pedro
    INTERNET OF THINGS, 2025, 30
  • [4] Digital Twins of Processes of Thermomechanical Treatment of Steel
    A. I. Rudskoy
    N. G. Kolbasnikov
    Metal Science and Heat Treatment, 2020, 62 : 3 - 10
  • [5] Towards Digital Twins of Small Productive Processes in Microgrids
    Espin-Sarzosa, Danny
    Palma-Behnke, Rodrigo
    Valencia-Arroyave, Felipe
    ENERGIES, 2023, 16 (11)
  • [6] Automated and Systematic Digital Twins Testing for Industrial Processes
    Ma, Yunpeng
    Younis, Khalil
    Ahmed, Bestoun S.
    Kassler, Andreas
    Krakhmalev, Pavel
    Thore, Andreas
    Lindback, Hans
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS, ICSTW, 2023, : 149 - 158
  • [7] Digital Twins of Business Processes as Enablers for IT/OT Integration
    Waclawek, Hannes
    Schafer, Georg
    Binder, Christoph
    Hirsch, Eduard
    Huber, Stefan
    2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,
  • [8] Digital twins for electro-physical, chemical, and photonic processes
    Guo, Yuebin
    Klink, Andreas
    Bartolo, Paulo
    Guo, Weihong Grace
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (02) : 593 - 619
  • [9] A methodology for information modelling and analysis of manufacturing processes for digital twins
    Su, Shuo
    Nassehi, Aydin
    Qi, Qunfen
    Hicks, Ben
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 90
  • [10] Experience from implementing digital twins for maintenance in industrial processes
    Hassan, Muhammad
    Svadling, Marcus
    Bjorsell, Niclas
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (02) : 875 - 884