A novel biomass solid waste-based form-stable phase change materials for thermal energy storage

被引:6
|
作者
Liu, Peng [1 ,6 ]
Zhao, Zhengyuan [2 ,3 ]
Gu, Xiaobin [2 ,4 ,8 ]
Li, Jinhong [5 ]
Bian, Liang [1 ,7 ,9 ]
Li, Yan [1 ,6 ]
机构
[1] Hebei GEO Univ, Sch Gems & Mat Technol, Shijiazhuang 050031, Hebei, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou, Peoples R China
[3] Hefei Inst Low Carbon, Hefei 230051, Anhui, Peoples R China
[4] Chinese Acad Sci, Mat Interfaces Ctr, Shenzhen Inst Adv Technol, Shenzhen 518005, Guangdong, Peoples R China
[5] China Univ Geosci, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
[6] Hebei Key Lab Green Dev Rock & Mineral Mat Hebei P, Shijiazhuang 050031, Hebei, Peoples R China
[7] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
[8] 2 Nengyuan Rd, Guangzhou, Peoples R China
[9] 59 Qinglong Rd, Mianyang, Sichuan, Peoples R China
关键词
Palmitic acid; Plant ash; FSPCM; Comparative study; Encapsulation; Thermal energy storage; GRAPHITE COMPOSITE; ACID; PCM; CONDUCTIVITY; LEAKAGE; STRAW; PEG;
D O I
10.1016/j.jmrt.2023.07.120
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To improve the energy storage capacity of phase change materials, the influence of plant ash, a typical biomass solid waste, with different particle sizes on the encapsulation of palmitic acid has been investigated to find better supporting materials for preparing form-stable phase change material (FSPCM). During the experiment, palmitic acid/Plant ash composites with different mass fractions of palmitic acid were fabricated by the direct impregnation method. And the packaging capability, particle size distribution, surface area, microstructure, chemical compatibility, and thermal properties were investigated systematically. The particle size distribution test shows that the mean-volume diameter of plant ash sieved by 30 -60 mesh (PLA-1) and PLA sieved by -60 mesh (PLA-2) is 60.21 and 41.21 mm, respectively. The DSC results show that the enthalpy of PA/PLA-2 FSPCM is 99.7 J/g, which is almost twice that of PA/PLA-1 FSPCM. In short, as-prepared PA/PLA FSPCM exerts a bigger energy storage capacity, which makes it a great candidate for thermal energy storage. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:7039 / 7049
页数:11
相关论文
共 50 条
  • [11] Form-stable microencapsulated phase change materials for efficient solar thermal energy storage
    Hu, Heng
    Zhang, Haili
    Hong, Shuliang
    MATERIALS LETTERS, 2023, 352
  • [12] Freeze-cast form-stable phase change materials for thermal energy storage
    Noel, John A.
    White, Mary Anne
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 223
  • [13] Thermal storage using form-stable phase-change materials
    Syed, MT
    Kumar, S
    Moallemi, MK
    Naraghi, MN
    ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1997, 39 (05): : 45 - 50
  • [14] Preparation and characterization of a novel form-stable phase change material for thermal energy storage
    Liu, Qinfeng
    Jiang, Liang
    Zhao, Yuanyang
    Wang, Yi
    Lei, Jingxin
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (04) : 2945 - 2952
  • [15] Thermal properties of biomass-based form-stable phase change material for latent heat thermal energy storage
    Sun, Yafen
    Zhang, Nan
    Pan, Xiyu
    Zhong, Wei
    Qiu, Bokai
    Cai, Yuxuan
    Yuan, Yanping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (14) : 20372 - 20383
  • [16] Preparation and characterization of a novel form-stable phase change material for thermal energy storage
    Qinfeng Liu
    Liang Jiang
    Yuanyang Zhao
    Yi Wang
    Jingxin Lei
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 2945 - 2952
  • [17] Thermal storage using form-stable phase-change materials
    Syed, M.Tashfeen
    Kumar, Sunil
    Moallemi, M.Karim
    Naraghi, Mehdi N.
    1997, ASHRAE, Atlanta, GA, United States (39)
  • [18] Biomass derived carbon aerogel as an ultrastable skeleton of form-stable phase change materials for efficient thermal energy storage
    Zou, Zhiqiang
    Wu, Wei
    Wang, Yi
    Drummer, Dietmar
    MATERIALS RESEARCH EXPRESS, 2020, 7 (04)
  • [19] Experimental study on a novel form-stable phase change materials based on diatomite for solar energy storage
    Rao, Zhonghao
    Zhang, Guangtong
    Xu, Taotao
    Hong, Kun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 52 - 60
  • [20] Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage
    Leng, Guanghui
    Qiao, Geng
    Jiang, Zhu
    Xu, Guizhi
    Qin, Yue
    Chang, Chun
    Ding, Yulong
    APPLIED ENERGY, 2018, 217 : 212 - 220