GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network

被引:4
|
作者
Yang, Runtao [1 ]
Fu, Yao [1 ]
Zhang, Qian [2 ]
Zhang, Lina [1 ,3 ]
机构
[1] Shandong Univ Weihai, Sch Mech Elect & Informat Engn, Shandong 264209, Peoples R China
[2] Inst Sci & Technol Informat, Heze 274000, Peoples R China
[3] Shandong Univ Weihai, Sch Mech Elect & Informat Engn, Wenhuaxi Rd 180, Shandong, Peoples R China
关键词
Drug-disease association; Graph convolutional network; Graph attention network; Heterogeneous graph;
D O I
10.1016/j.artmed.2024.102805
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting drug-disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug- disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug-disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug-disease information, a drug-disease heterogeneous graph structure is constructed based on all known drug-disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug-disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug-disease associations by learning drug-disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug-disease. Using the 5 -fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Hierarchical graph attention network for miRNA-disease association prediction
    Li, Zhengwei
    Zhong, Tangbo
    Huang, Deshuang
    You, Zhu-Hong
    Nie, Ru
    MOLECULAR THERAPY, 2022, 30 (04) : 1775 - 1786
  • [22] A gated graph attention network based on dual graph convolution for node embedding
    Ruowang Yu
    Lanting Wang
    Yu Xin
    Jiangbo Qian
    Yihong Dong
    Applied Intelligence, 2023, 53 : 19962 - 19975
  • [23] A gated graph attention network based on dual graph convolution for node embedding
    Yu, Ruowang
    Wang, Lanting
    Xin, Yu
    Qian, Jiangbo
    Dong, Yihong
    APPLIED INTELLIGENCE, 2023, 53 (17) : 19962 - 19975
  • [24] Attention-based cross domain graph neural network for prediction of drug-drug interactions
    Yu, Hui
    Li, KangKang
    Dong, WenMin
    Song, ShuangHong
    Gao, Chen
    Shi, JianYu
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [25] Graph Partition Convolution Neural Network for Pedestrian Trajectory Prediction
    Wang, Ruiyang
    Li, Ming
    Zhang, Pin
    Wen, Fan
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 457 - 462
  • [26] Optimized Graph Convolution Recurrent Neural Network for Traffic Prediction
    Guo, Kan
    Hu, Yongli
    Qian, Zhen
    Liu, Hao
    Zhang, Ke
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (02) : 1138 - 1149
  • [27] Attention-Based Graph Neural Network for Molecular Solubility Prediction
    Ahmad, Waciar
    Tayara, Hilal
    Chong, Kil To
    ACS OMEGA, 2023, 8 (03): : 3236 - 3244
  • [28] MDGNN: Microbial Drug Prediction Based on Heterogeneous Multi-Attention Graph Neural Network
    Pi, Jiangsheng
    Jiao, Peishun
    Zhang, Yang
    Li, Junyi
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [29] A Graph Neural Network for Ship Link Prediction Based on Graph Attention Mechanism and Quaternion Embedding
    Zhou, Jiaqi
    Yu, Wenxian
    Zhang, Jing
    Mu, Siyuan
    Li, Yan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [30] Graph-Based Neural Collaborative Filtering Model for Drug-Disease Associations Prediction
    Xiong, Xiaotian
    Yuan, Qianshi
    Zhou, Maoan
    Wei, Xiaomei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2022, 13368 : 556 - 567