Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation

被引:0
|
作者
Liu, Quansheng [1 ]
Wang, Lei [1 ]
Jun, Yu [1 ]
Gao, Fang [2 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Peoples R China
[2] Guangxi Univ, Sch Elect Engn, Nanning, Peoples R China
关键词
Domain Adaptation; Semantic Segmentation; Transformer; Attention mechanism;
D O I
10.1007/978-3-031-44198-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of unsupervised domain adaptive semantic segmentation (UDA-SS) is to learn a model using annotated data from the source domain and generate accurate dense predictions for the unlabeled target domain. UDA methods based on Transformer utilize self-attention mechanism to learn features within source and target domains. However, in the presence of significant distribution shift between the two domains, the noisy pseudo-labels could hinder the model's adaptation to the target domain. In this work, we proposed to incorporate self-attention and cross-domain attention to learn domain-invariant features. Specifically, we design a weight-sharing multi-branch cross-domain Transformer, where the cross-domain branch is used to align domains at the feature level with the aid of cross-domain attention. Moreover, we introduce an adaptive thresholding strategy for pseudo-label selection, which dynamically adjusts the proportion of pseudo-labels that are used in training based on the model's adaptation status. Our approach guarantees the reliability of the pseudo labels while allowing more target domain samples to contribute to model training. Extensive experiments show that our proposed method consistently outperforms the baseline and achieves competitive results on GTA5 -> Cityscapes, Synthia -> Cityscapes, and Cityscapes -> ACDC benchmark.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [21] Cross-Domain Correlation Distillation for Unsupervised Domain Adaptation in Nighttime Semantic Segmentation
    Gao, Huan
    Guo, Jichang
    Wang, Guoli
    Zhang, Qian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9903 - 9913
  • [22] Cross-Domain Adaptive Teacher for Object Detection
    Li, Yu-Jhe
    Dai, Xiaoliang
    Ma, Chih-Yao
    Liu, Yen-Cheng
    Chen, Kan
    Wu, Bichen
    He, Zijian
    Kitani, Kris
    Vajda, Peter
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7571 - 7580
  • [23] Efficient and adaptive secure cross-domain recommendations
    Liu, Hong
    He, Jian
    Xu, Zhu
    Zhang, Yushu
    Zhao, Zhiqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [24] Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation
    Li, Jichang
    Li, Guanbin
    Shi, Yemin
    Yu, Yizhou
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2505 - 2514
  • [25] Multi-Level Domain Adaptive Learning for Cross-Domain Detection
    Xie, Rongchang
    Yu, Fei
    Wang, Jiachao
    Wang, Yizhou
    Zhang, Li
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3213 - 3219
  • [26] Task-Adaptive Prompted Transformer for Cross-Domain Few-Shot Learning
    Wu, Jiamin
    Liu, Xin
    Yin, Xiaotian
    Zhang, Tianzhu
    Zhang, Yongdong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6012 - 6020
  • [27] Undoing the Damage of Label Shift for Cross-domain Semantic Segmentation
    Liu, Yahao
    Deng, Jinhong
    Tao, Jiale
    Chu, Tong
    Duan, Lixin
    Li, Wen
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 7032 - 7042
  • [28] Prototypical Bidirectional Adaptation and Learning for Cross-Domain Semantic Segmentation
    Ren, Qinghua
    Mao, Qirong
    Lu, Shijian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 501 - 513
  • [29] Learning Pseudo-Relations for Cross-domain Semantic Segmentation
    Zhao, Dong
    Wangc, Shuang
    Zang, Qi
    Quan, Dou
    Ye, Xiutiao
    Yang, Rui
    Jiao, Licheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19134 - 19146
  • [30] Self-Ensembling GAN for Cross-Domain Semantic Segmentation
    Xu, Yonghao
    He, Fengxiang
    Du, Bo
    Tao, Dacheng
    Zhang, Liangpei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7837 - 7850