Cross-Domain Transformer with Adaptive Thresholding for Domain Adaptive Semantic Segmentation

被引:0
|
作者
Liu, Quansheng [1 ]
Wang, Lei [1 ]
Jun, Yu [1 ]
Gao, Fang [2 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Peoples R China
[2] Guangxi Univ, Sch Elect Engn, Nanning, Peoples R China
关键词
Domain Adaptation; Semantic Segmentation; Transformer; Attention mechanism;
D O I
10.1007/978-3-031-44198-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of unsupervised domain adaptive semantic segmentation (UDA-SS) is to learn a model using annotated data from the source domain and generate accurate dense predictions for the unlabeled target domain. UDA methods based on Transformer utilize self-attention mechanism to learn features within source and target domains. However, in the presence of significant distribution shift between the two domains, the noisy pseudo-labels could hinder the model's adaptation to the target domain. In this work, we proposed to incorporate self-attention and cross-domain attention to learn domain-invariant features. Specifically, we design a weight-sharing multi-branch cross-domain Transformer, where the cross-domain branch is used to align domains at the feature level with the aid of cross-domain attention. Moreover, we introduce an adaptive thresholding strategy for pseudo-label selection, which dynamically adjusts the proportion of pseudo-labels that are used in training based on the model's adaptation status. Our approach guarantees the reliability of the pseudo labels while allowing more target domain samples to contribute to model training. Extensive experiments show that our proposed method consistently outperforms the baseline and achieves competitive results on GTA5 -> Cityscapes, Synthia -> Cityscapes, and Cityscapes -> ACDC benchmark.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
  • [1] CDAC: Cross-domain Attention Consistency in Transformer for Domain Adaptive Semantic Segmentation
    Wang, Kaihong
    Kim, Donghyun
    Feris, Rogerio
    Betke, Margrit
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11485 - 11495
  • [2] Cross-Domain Grouping and Alignment for Domain Adaptive Semantic Segmentation
    Kim, Minsu
    Joung, Sunghun
    Kim, Seungryong
    Park, Jungin
    Kim, Ig-Jae
    Sohn, Kwanghoon
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1799 - 1807
  • [3] DAT: DOMAIN ADAPTIVE TRANSFORMER FOR DOMAIN ADAPTIVE SEMANTIC SEGMENTATION
    Park, Jinyoung
    Son, Minseok
    Lee, Sumin
    Kim, Changick
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4183 - 4187
  • [4] TACS: Taxonomy Adaptive Cross-Domain Semantic Segmentation
    Gong, Rui
    Danelljan, Martin
    Dai, Dengxin
    Paudel, Danda Pani
    Chhatkuli, Ajad
    Yu, Fisher
    Van Gool, Luc
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 19 - 35
  • [5] Domain Adaptive Video Semantic Segmentation via Cross-Domain Moving Object Mixing
    Cho, Kyusik
    Lee, Suhyeon
    Seong, Hongje
    Kim, Euntai
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 489 - 498
  • [6] Crots: Cross-Domain Teacher–Student Learning for Source-Free Domain Adaptive Semantic Segmentation
    Xin Luo
    Wei Chen
    Zhengfa Liang
    Longqi Yang
    Siwei Wang
    Chen Li
    International Journal of Computer Vision, 2024, 132 : 20 - 39
  • [7] PMDA: Domain Alignment with Prototype Matching for Cross-Domain Adaptive Segmentation
    Li, Weiwei
    Ren, Yuanyuan
    Liu, Junzhuo
    Wang, Chenyang
    Zheng, Yuchen
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2339 - 2344
  • [8] Crots: Cross-Domain Teacher-Student Learning for Source-Free Domain Adaptive Semantic Segmentation
    Luo, Xin
    Chen, Wei
    Liang, Zhengfa
    Yang, Longqi
    Wang, Siwei
    Li, Chen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (01) : 20 - 39
  • [9] Graph Adaptive Semantic Transfer for Cross-domain Sentiment Classification
    Zhang, Kai
    Liu, Qi
    Huang, Zhenya
    Cheng, Mingyue
    Zhang, Kun
    Zhang, Mengdi
    Wu, Wei
    Chen, Enhong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1566 - 1576
  • [10] Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation
    Kim, Daehan
    Seo, Minseok
    Park, Kwanyong
    Shin, Inkyu
    Woo, Sanghyun
    Kweon, In-So
    Choi, Dong-Geol
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1114 - 1123