Ecological restoration evaluation of afforestation in Gudao Oilfield based on multi-source remote sensing data

被引:3
|
作者
Li, Xiuneng [1 ,2 ]
Li, Yongtao [3 ,4 ]
Wang, Hong [5 ]
Qin, Shuhong [1 ]
Wang, Xin [5 ]
Yang, Han [5 ]
Cornelis, Wim [2 ]
机构
[1] Hohai Univ, Sch Earth Sci & Engn, Nanjing 211100, Peoples R China
[2] Univ Ghent, Dept Environm, B-9000 Ghent, Belgium
[3] Shandong Acad Forestry Sci, Jinan 250014, Peoples R China
[4] Natl Observat & Res Stn Chinese Forest Ecosyst Yel, Dongying 257000, Peoples R China
[5] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Ecological evaluation; Oilfield ecological restoration; Forest management; RSEI; CHINA; WATER; TEMPERATURE; INDEX; VEGETATION; DIVERSITY; INCREASES; DELTA; SOIL;
D O I
10.1016/j.ecoleng.2023.107107
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The growing petroleum industry poses significant ecological challenges, prompting an increased focus on ecological restoration projects in onshore oilfields. Current efforts focus on revegetation in deforested oilfields, while research remains limited on alternative ecological restoration strategies aimed at establishing new eco-systems in oilfields. This study employed multi-source remote sensing data from 1985 to 2022 to calculate a remote sensing-based ecological index (RSEI) and constructed an integrated forest health index (IFHI), in order to evaluate the ecological restoration effects in the Gudao shelterbelt of Shengli Oilfield in the Yellow River Delta, and investigated the impact of oil extraction by considering forest phenology. The RSEI of the shelterbelt showed an upward trend and reached a Good level of ecological environment quality from 1990 to 2003, but it declined after that, indicating the potential of RSEI to quickly assess ecological restoration effects and guide management at different stages. Comparing the restoration effects of different tree species, a Robinia pseudoacacia L. (RP) and Fraxinus velutina Torr. (FV) mixed forest demonstrated the greatest capacity to improve environ-mental quality, with the most years (25 years) of the Good and Excellent levels and the highest IFHI value (1.52). In contrast, Ulmus pumila L. (UP) and Sophora japonica L. (SJ) were unsuitable for mixed planting for ecological restoration. The study also found that monospecific RP forests within 30 m of oil wells were significantly impacted by oil extraction (P <= 0.05), necessitating tailored forest management. The research aims to serve as a reference for ecological restoration in global onshore oil production areas, particularly in delta regions and sparsely vegetated areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] CHANGE DETECTION OF THE TANGJIASHAN BARRIER LAKE BASED ON MULTI-SOURCE REMOTE SENSING DATA
    Xu, Min
    Cao, Chunxiang
    Zhang, Hao
    Xue, Yong
    Li, Yingjie
    Guo, JianPing
    Chang, Caoyi
    He, Qisheng
    Gao, Mengxu
    Li, Xiaowen
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2683 - +
  • [32] RESEARCH ON DROUTHT MONITORING IN SHANDONG PROVIENCE BASED ON MULTI-SOURCE REMOTE SENSING DATA
    Wan, Hong
    Guo, Peng
    Wang, Zhengdong
    Zhao, Tianjie
    Meng, Chunhong
    Yang, Gang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9428 - 9430
  • [33] Crop classification based on multi-source remote sensing data fusion and LSTM algorithm
    Xie Y.
    Zhang Y.
    Xun L.
    Chai X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (15): : 129 - 137
  • [34] Road extraction technology based on multi-source remote sensing data: review and prospects
    Jia J.-X.
    Sun H.-B.
    Jiang C.-H.
    Wang Y.-M.
    Wang T.-H.
    Chen J.-S.
    Chen Y.-W.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (02): : 430 - 442
  • [35] Exploring Ecological Quality and Its Driving Factors in Diqing Prefecture, China, Based on Annual Remote Sensing Ecological Index and Multi-Source Data
    Wang, Chen
    Sheng, Qianqian
    Zhu, Zunling
    LAND, 2024, 13 (09)
  • [36] Ecological restoration for mega-infrastructure projects: a study based on multi-source heterogeneous data
    Song, Ruizhen
    Gao, Xin
    Nan, Haonan
    Zeng, Saixing
    Tam, Vivian W. Y.
    ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT, 2024, 31 (09) : 3653 - 3678
  • [37] Evaluation of China's coastal ecological restoration policies based on multi-source flow theory
    Yuan, Bin
    Zhong, Yuping
    Sun, Mengjiao
    Yang, Peng
    Huang, Jinpeng
    REGIONAL STUDIES IN MARINE SCIENCE, 2025, 81
  • [38] Evaluation of important phenotypic parameters of tea plantations using multi-source remote sensing data
    Li, He
    Wang, Yu
    Fan, Kai
    Mao, Yilin
    Shen, Yaozong
    Ding, Zhaotang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [39] Integrating multi-source remote sensing data for soil mapping in Victoria
    Abuzar, M
    Ryan, S
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2495 - 2497
  • [40] MAPPING AERODYNAMIC ROUGHNESS LENGTH WITH MULTI-SOURCE REMOTE SENSING DATA
    Hu, Deyong
    Cao, Shisong
    Chen, Shanshan
    Feng, Nan
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,