Processing-in-Memory Using Optically-Addressed Phase Change Memory

被引:4
|
作者
Yang, Guowei [1 ]
Demirkiran, Cansu [1 ]
Kizilates, Zeynep Ece [1 ]
Ocampo, Carlos A. Rios [2 ]
Coskun, Ayse K. [1 ]
Joshi, Ajay [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Univ Maryland, College Pk, MD 20742 USA
关键词
optical computing; phase change memory; processing-in-memory; deep neural networks; NEURAL-NETWORKS;
D O I
10.1109/ISLPED58423.2023.10244409
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today's Deep Neural Network (DNN) inference systems contain hundreds of billions of parameters, resulting in significant latency and energy overheads during inference due to frequent data transfers between compute andmemory units. Processing-in-Memory (PiM) has emerged as a viable solution to tackle this problem by avoiding the expensive data movement. PiM approaches based on electrical devices suffer from throughput and energy efficiency issues. In contrast, Optically-addressed Phase Change Memory (OPCM) operates with light and achieves much higher throughput and energy efficiency compared to its electrical counterparts. This paper introduces a system-level design that takes the OPCM programming overhead into consideration, and identifies that the programming cost dominates the DNN inference on OPCM-based PiM architectures. We explore the design space of this system and identify themost energy-efficientOPCMarray size and batch size. We propose a novel thresholding and reordering technique on the weight blocks to further reduce the programming overhead. Combining these optimizations, our approach achieves up to 65.2 x higher throughput than existing photonic accelerators for practical DNN workloads.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Active Memory Cube: A processing-in-memory architecture for exascale systems
    Nair, R.
    Antao, S. F.
    Bertolli, C.
    Bose, P.
    Brunheroto, J. R.
    Chen, T.
    Cher, C. -Y.
    Costa, C. H. A.
    Doi, J.
    Evangelinos, C.
    Fleischer, B. M.
    Fox, T. W.
    Gallo, D. S.
    Grinberg, L.
    Gunnels, J. A.
    Jacob, A. C.
    Jacob, P.
    Jacobson, H. M.
    Karkhanis, T.
    Kim, C.
    Moreno, J. H.
    O'Brien, J. K.
    Ohmacht, M.
    Park, Y.
    Prener, D. A.
    Rosenburg, B. S.
    Ryu, K. D.
    Sallenave, O.
    Serrano, M. J.
    Siegl, P. D. M.
    Sugavanam, K.
    Sura, Z.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2015, 59 (2-3)
  • [22] Database Processing-in-Memory: An Experimental Study
    Kepe, Tiago R.
    de Almeida, Eduardo C.
    Alves, Marco A. Z.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 13 (03): : 334 - 347
  • [23] Processing-in-Memory: Exploring the Design Space
    Scrbak, Marko
    Islam, Mahzabeen
    Kavi, Krishna M.
    Ignatowski, Mike
    Jayasena, Nuwan
    ARCHITECTURE OF COMPUTING SYSTEMS - ARCS 2015, 2015, 9017 : 43 - 54
  • [24] A Survey of Resource Management for Processing-In-Memory and Near-Memory Processing Architectures
    Khan, Kamil
    Pasricha, Sudeep
    Kim, Ryan Gary
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2020, 10 (04) : 1 - 31
  • [25] Volatile and Nonvolatile Memory Devices for Neuromorphic and Processing-in-memory Applications
    Cho, Seongjae
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2022, 22 (01) : 30 - 46
  • [26] Wave-PIM: AcceleratingWave Simulation Using Processing-in-Memory
    Hanindhito, Bagus
    Li, Ruihao
    Gourounas, Dimitrios
    Fathi, Arash
    Govil, Karan
    Trenev, Dimitar
    Gerstlauer, Andreas
    John, Lizy K.
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [27] Accelerating Large Table Scan Using Processing-In-Memory Technology
    Baumstark, Alexander
    Jibril, Muhammad Attahir
    Sattler, Kai-Uwe
    Datenbank-Spektrum, 2023, 23 (03): : 199 - 209
  • [28] A Design Framework for Processing-In-Memory Accelerator
    Gao, Di
    Shen, Tianhao
    Zhuo, Cheng
    2018 ACM/IEEE INTERNATIONAL WORKSHOP ON SYSTEM LEVEL INTERCONNECT PREDICTION (SLIP), 2018,
  • [29] Scalability Limitations of Processing-in-Memory using Real System Evaluations
    Jonatan G.
    Cho H.
    Son H.
    Wu X.
    Livesay N.
    Mora E.
    Shivdikar K.
    Abellán J.L.
    Joshi A.
    Kaeli D.
    Kim J.
    Performance Evaluation Review, 2024, 52 (01): : 63 - 64
  • [30] Using Chiplet Encapsulation Technology to Achieve Processing-in-Memory Functions
    Tian, Wenchao
    Li, Bin
    Li, Zhao
    Cui, Hao
    Shi, Jing
    Wang, Yongkun
    Zhao, Jingrong
    MICROMACHINES, 2022, 13 (10)