New sizes of complete (k, 4)-arcs in PG(2, 17)

被引:0
|
作者
Hamed, Zainab Shehab [1 ]
机构
[1] Mustansiriyah Univ, Coll Sci, Dept Math, Baghdad, Iraq
关键词
Complete arc; Group of complete (k; n)-arc; Inequivalent secant distribution; PG(2; 17); 13);
D O I
10.21123/bsj.2022.6820
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the packing problem for complete (k, 4)-arcs in PG(2, 17) is partially solved. The minimum and the maximum sizes of complete (k, 4)-arcs in PG(2, 17) are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete (k, 4)-arc K in PG(2, 17) and the algebraic characteristics of a plane quartic curve over the field F17 represented by the number of its rational points and inflexion points. In addition, some sizes of complete (k, 6)-arcs in the projective plane of order thirteen are established, namely for k = 53, 54, 55, 56.
引用
收藏
页码:502 / 506
页数:5
相关论文
共 50 条
  • [1] On sizes of complete arcs in PG(2, q)
    Bartoli, Daniele
    Davydov, Alexander A.
    Faina, Giorgio
    Marcugini, Stefano
    Pambianco, Fernanda
    DISCRETE MATHEMATICS, 2012, 312 (03) : 680 - 698
  • [2] Complete arcs in PG(2,25):: The spectrum of the sizes and the classification of the smallest complete arcs
    Marcugini, Stefano
    Milani, Alfredo
    Pambianco, Fernanda
    DISCRETE MATHEMATICS, 2007, 307 (06) : 739 - 747
  • [3] On sizes of complete caps in projective spaces PG(n, q) and arcs in planes PG(2, q)
    Davydov A.A.
    Faina G.
    Marcugini S.
    Pambianco F.
    Journal of Geometry, 2009, 94 (1-2) : 31 - 58
  • [4] The complete (k, 3)-arcs of PG(2,q), q≤13
    Coolsaet, K.
    Sticker, H.
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (02) : 89 - 111
  • [5] The Complete k-arcs of PG(2,27) and PG(2,29)
    Coolsaet, Kris
    Sticker, Heide
    JOURNAL OF COMBINATORIAL DESIGNS, 2011, 19 (02) : 111 - 130
  • [6] NOTE ON THE ORDER OF MAGNITUDE OF K FOR COMPLETE K-ARCS IN PG(2,Q)
    SZONYI, T
    DISCRETE MATHEMATICS, 1987, 66 (03) : 279 - 282
  • [7] New (n, r)-arcs in PG(2, 17), PG(2, 19), and PG(2, 23)
    R. Daskalov
    E. Metodieva
    Problems of Information Transmission, 2011, 47 : 217 - 223
  • [8] A Full Classification of the Complete k-Arcs of PG (2,23) and PG (2,25)
    Coolsaet, K.
    Sticker, H.
    JOURNAL OF COMBINATORIAL DESIGNS, 2009, 17 (06) : 459 - 477
  • [9] Small complete arcs in PG(2, p)
    Hadnagy, É
    FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (01) : 1 - 12
  • [10] The Complete Arcs of PG(2,31)
    Coolsaet, Kris
    JOURNAL OF COMBINATORIAL DESIGNS, 2015, 23 (12) : 522 - 533