Harnessing next generation sequencing and machine learning approaches for delimiting new species of cave endemics in the Israeli arachnofauna

被引:0
|
作者
Steiner, H. G. [1 ]
Baker, C. M. [1 ]
Sharma, P. M. [1 ]
Ballesteros, J. A. [1 ]
Gainett, G. [1 ]
机构
[1] Univ Wisconsin Madison, Madison, WI USA
关键词
D O I
暂无
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
P2-92
引用
收藏
页码:S299 / S299
页数:1
相关论文
共 50 条
  • [21] Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next-Generation Sequencing Data
    Njage, Patrick Murigu Kamau
    Henri, Clementine
    Leekitcharoenphon, Pimlapas
    Mistou, Michel-Yves
    Hendriksen, Rene S.
    Hald, Tine
    RISK ANALYSIS, 2019, 39 (06) : 1397 - 1413
  • [22] Predicting Cytomegalovirus Viral Load from Next-Generation Sequencing Data: A Machine Learning Approach
    Mallory, M.
    Hymas, W.
    Simmon, K.
    Henrie, K.
    Lloyd, J.
    Rawal, M.
    Hanson, K.
    Hillyard, D.
    Bradley, B.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2024, 26 (11): : S84 - S85
  • [23] Integration of Next Generation Sequencing, Artificial Intelligence and Machine Learning in Cancer Diagnostics: A Major Leap Forward
    Qureshi, Muhammad Asif
    JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2024, 34 (02): : 127 - 128
  • [24] Amplicon-Based, Next-Generation Sequencing Approaches to Characterize Single Nucleotide Polymorphisms of Orthohantavirus Species
    Taylor, Mariah K.
    Williams, Evan P.
    Wongsurawat, Thidathip
    Jenjaroenpun, Piroon
    Nookaew, Intawat
    Jonsson, Colleen B.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2020, 10
  • [25] New Approaches and Strategies for Proficiency Testing for Next-Generation Sequencing-Based Oncology Assays
    Harada, Shuko
    Mackinnon, Alexander C.
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2022, 157 (04) : 478 - 479
  • [26] Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications
    Barros-Silva, Daniela
    Joana Marques, C.
    Henrique, Rui
    Jeronimo, Carmen
    GENES, 2018, 9 (09):
  • [27] Correction to: Effective machine-learning assembly for next-generation amplicon sequencing with very low coverage
    Louis Ranjard
    Thomas K. F. Wong
    Allen G. Rodrigo
    BMC Bioinformatics, 21
  • [28] Lymphoma Diagnosis and Classification Using Next Generation Sequencing of 30 CD Markers and Machine Learning As an Alternative to Immunohistochemistry
    Albitar, Maher
    Zhang, Hong
    Ip, Andrew
    Ma, Wanlong
    Estella, Jeffrey Justin
    Leslie, Lori A.
    Feldman, Tatyana
    Charifa, Ahmad
    Mohtashamian, Arash
    Pecora, Andrew L.
    Goy, Andre
    BLOOD, 2023, 142
  • [29] Finding Transcripts Associated with Prostate Cancer Gleason Stages Using Next Generation Sequencing and Machine Learning Techniques
    Hamzeh, Osama
    Alkhateeb, Abedalrhman
    Rezaeian, Iman
    Karkar, Aram
    Rueda, Luis
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2017, PT II, 2017, 10209 : 337 - 348
  • [30] Machine learning to distinguish true somatic variants from noise in tumour only next generation sequencing data
    Oquendo, C. Jaramillo
    Parker, H.
    Strefford, J. C.
    Gibson, J.
    Ennis, S.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 659 - 659