Natural Convection on Dendrite Morphology: A High-performance Phase-field Lattice Boltzmann Study

被引:5
|
作者
Takaki, Tomohiro [1 ]
Sakane, Shinji [1 ]
Aoki, Takayuki [2 ]
机构
[1] Kyoto Inst Technol, Fac Mech Engn, Sakyo Ku, Kyoto 6068585, Japan
[2] Tokyo Inst Technol, Global Sci Informat & Comp Ctr, Meguro Ku, 2-12-1-i7-3 Ohokayama, Tokyo 1528550, Japan
关键词
phase-field method; lattice Boltzmann method; high-performance computing; natural convection; dendrite; fragmentation; DIRECTIONAL SOLIDIFICATION; SN-BI; FORCED-CONVECTION; FRAGMENTATION; GROWTH; ALLOY; SIMULATIONS; EVOLUTION; MOTION; LEVEL;
D O I
10.2355/isijinternational.ISIJINT-2022-146
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Numerical study on the effect of liquid flow on three-dimensional dendrite growth is still a challenging topic. Herein, high-performance phase-field lattice Boltzmann (PF-LB) simulations were performed to investigate the effect of natural convection on dendrite morphology and the possibility for causing fragmentation. Parallel computing in multiple graphics processing units (GPUs) with dynamic load balancing for the block-structured adaptive mesh refinement (AMR) scheme (parallel- GPU AMR) was applied to the PF-LB simulations as a high-performance computing tool in a GPU supercomputer. Parallel-GPU AMR PF-LB simulations showed that the growth of dendrites with natural convection in two and three dimensions were quite different. The dendrite tip velocity increased in the following order: upward buoyancy, no gravity, and downward buoyancy. Downward and upward buoyancy enhanced and restricted the growth of the secondary arms, respectively. The root size of the secondary arms growing from the bottom was drastically affected by the flow direction. However, the dendrite fragmentations were not observed in the present simulations.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [21] Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt
    Ang Zhang
    Zhi-peng Guo
    Shou-mei Xiong
    China Foundry, 2017, 14 : 373 - 378
  • [22] Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt
    Ang Zhang
    Zhipeng Guo
    Shoumei Xiong
    China Foundry, 2017, 14 (05) : 373 - 378
  • [23] Data assimilation with phase-field lattice Boltzmann method for dendrite growth with liquid flow and solid motion
    Yamamura, Ayano
    Sakane, Shinji
    Ohno, Munekazu
    Yasuda, Hideyuki
    Takaki, Tomohiro
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 215
  • [24] Modeling coupled growth and motion of solid-air dendrite induced by convection in liquid hydrogen using phase-field lattice Boltzmann method
    Li, Chaolong
    Wen, Jian
    Li, Ke
    Wang, Simin
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 153
  • [25] A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection
    Zhang, Ang
    Du, Jinglian
    Guo, Zhipeng
    Wang, Qigui
    Xiong, Shoumei
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2018, 49 (06): : 3603 - 3615
  • [26] A Phase-Field Lattice-Boltzmann Study on Dendritic Growth of Al-Cu Alloy Under Convection
    Ang Zhang
    Jinglian Du
    Zhipeng Guo
    Qigui Wang
    Shoumei Xiong
    Metallurgical and Materials Transactions B, 2018, 49 : 3603 - 3615
  • [27] Phase-field-lattice Boltzmann studies for dendritic growth with natural convection
    Takaki, Tomohiro
    Rojas, Roberto
    Sakane, Shinji
    Ohno, Munekazu
    Shibuta, Yasushi
    Shimokawabe, Takashi
    Aoki, Takayuki
    JOURNAL OF CRYSTAL GROWTH, 2017, 474 : 146 - 153
  • [28] Phase-field modeling by the method of lattice Boltzmann equations
    Fakhari, Abbas
    Rahimian, Mohammad H.
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [29] Phase-field lattice Boltzmann simulations of multiple dendrite growth with motion, collision, and coalescence and subsequent grain growth
    Takaki, Tomohiro
    Sato, Ryotaro
    Rojas, Roberto
    Ohno, Munekazu
    Shibuta, Yasushi
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 147 : 124 - 131
  • [30] Dependence of Lamellar Eutectic Growth with Convection on Boundary Conditions and Geometric Confinement: A Phase-Field Lattice-Boltzmann Study
    Ang Zhang
    Jinglian Du
    Zhipeng Guo
    Qigui Wang
    Shoumei Xiong
    Metallurgical and Materials Transactions B, 2019, 50 : 517 - 530