The present study provides valuable new information on the evolution of Sydney estuary by tracing the development of the complete marine-estuarine-fluvial system through a full glacial cycle (Last Interglacial, LIG, to the present Interglacial). Extensive seismic (361.3-line km) and sedimentological studies provided a sound foundation for production of a detailed litho- and seismic-stratigraphic record for the estuary. In the absence of reliable age data, a relative chronology was constructed based on Quaternary flooding surface elevations constrained by a recent local relative sea-level record supported by other global studies. A thick, ubiquitous estuarine unit deposited during the LIG period (MIS 5.5; 130-115 ka BP) was an important chronological marker horizon and played a critical role in controlling seismic interpretation and correlation throughout the estuary. Deposition during the MIS 5.1/5.3 interstadial period (100-80 ka BP) resulted in deposition of fine-grained, estuarine sediments in the lower estuary and time-equivalent, fluvial-sourced estuarine and channel sediments, and marsh sediments in the upper and central estuary, respectively. The MIS 3 interstadial event did not play a significant role in sedimentation in Sydney estuary. An eolian dune field formed adjacent to the southern shores of the estuary during the last glacial (31-24 ka BP) when most of the sediment in the lower estuary had been removed by fluvial erosion. Transgressive marine sand, which deposited in the lower paleovalley after the ocean re-entered the estuary, experienced repeated erosion and infilling by laterally migrating paleoriver channels. A marine flood-tide delta now occupies the estuary mouth, and the lower and upper/central estuary are mantled in a veneer (mean 7 m) of Holocene sand and mud, respectively.