Mixed Self-Assembled Hole-Transport Monolayer Enables Simultaneous Improvement of Efficiency and Stability of Perovskite Solar Cells

被引:6
|
作者
Kim, Do-Ha [1 ,2 ]
Lee, Hyun-Jung [1 ,2 ]
Lee, Sang-Heon [1 ,2 ]
Kang, Yu-Jin [3 ]
Kwon, Sung-Nam [1 ,2 ]
Kim, Do-Hyung [3 ]
Na, Seok-In [1 ,2 ]
机构
[1] Jeonbuk Natl Univ, Dept Flexible & Printable Elect, Jeonju Si 54896, South Korea
[2] Jeonbuk Natl Univ, LANL JBNU Engn Inst Korea, Jeonju Si 54896, South Korea
[3] KEPCO Res Inst, New & Renewable Energy Lab, Daejeon 34056, South Korea
基金
新加坡国家研究基金会;
关键词
high efficiency; interface engineering; mixed self-assembled hole-transport monolayers; perovskite solar cells; thermal long-term stability; HIGHLY EFFICIENT; PERFORMANCE; LAYER; INTERFACE; CRYSTALLIZATION; NIOX;
D O I
10.1002/solr.202400067
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As one of the interface engineering methods for realizing high-performance perovskite solar cells (PSCs), self-assembled monolayers (SAMs) with hole-transport properties have recently been applied as an effective way to reduce energy losses at the hole-transport layer/perovskite interface, especially in PSCs with p-i-n structure. However, there are still limitations in implementing PSC with high efficiency and high stability due to the inherent weaknesses of single SAMs. Herein, it is demonstrated that a mixed self-assembled hole-transport monolayer with an appropriate mixture of [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid (MeO-2PACz) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) enables simultaneous improvement of efficiency and stability of PSCs. In the mixed SAM, MeO-2PACz maintains favorable wettability to produce high-quality films, while the deep highest occupied molecular orbital of Me-4PACz optimizes the energy level for efficient charge transfer, resulting in improved PSC performance. Encouragingly, Me-4PACz mitigates the stability issues of MeO-2PACz, producing mixed SAM-based PSCs with excellent stability. These PSCs achieve up to 20.63% efficiency and exhibit excellent thermal long-term stability, retaining 90% and 80% of their initial efficiency after approximately 1400 and 2100 h at 65 degrees C in an N2 atmosphere. These findings suggest the potential of mixed SAM approaches for the realization of high-performance PSCs. Herein, the effect of mixed self-assembled hole-transport monolayers, which blend [2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid, on the efficiency and stability of perovskite solar cells (PSCs) is investigated. It is found that mixed self-assembled monolayer (SAM) enables simultaneous improvement of efficiency and stability of PSCs. These findings suggest the potential of mixed SAM approaches for the realization of high-performance PSCs.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Conjugated Self-Assembled Monolayer as Stable Hole-Selective Contact for Inverted Perovskite Solar Cells
    Zhang, Shuo
    Wu, Ruihan
    Mu, Chenkai
    Wang, Yanbo
    Han, Liyuan
    Wu, Yongzhen
    Zhu, Wei-Hong
    ACS MATERIALS LETTERS, 2022, 4 (10): : 1976 - 1983
  • [22] A Novel Self-Assembled Hole-Transporting Monolayer with Extending Conjugation for Inverted Perovskite Solar Cells
    Wang, Qian
    Li, Botong
    Yang, Hanqin
    Na, Zongxu
    Wei, Yijin
    Liu, Xuepeng
    Han, Mingyuan
    Zhang, Xianfu
    Du, Weilun
    Rahim, Ghadari
    Ding, Yong
    Shao, Zhipeng
    Yang, Huai
    Dai, Songyuan
    SMALL, 2025,
  • [23] Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells
    Wolff, Christian M.
    Canil, Laura
    Rehermann, Carolin
    Nguyen Ngoc Linh
    Zu, Fengshuo
    Ralaiarisoa, Maryline
    Caprioglio, Pietro
    Fiedler, Lukas
    Stolterfoht, Martin
    Kogikoski, Sergio, Jr.
    Bald, Ilko
    Koch, Norbert
    Unger, Eva L.
    Dittrich, Thomas
    Abate, Antonio
    Neher, Dieter
    ACS NANO, 2020, 14 (02) : 1445 - 1456
  • [24] Improved surface hydrophobicity of self-assembled transport layers enables perovskite/silicon tandem solar cells with efficiency approaching 31% ☆
    Liu, Shengzhong
    Wang, Jin
    Shi, Biao
    Dong, Yixin
    Liu, Dongxue
    Xu, Shenhzhi
    Yang, Miao
    He, Yongcai
    He, Bo
    Ru, Xiaoning
    Xu, Xixiang
    Wang, Pengyang
    Zhao, Ying
    Zhang, Xiaodan
    Yang, Jing
    Huang, Qian
    JOURNAL OF ENERGY CHEMISTRY, 2025, 104 : 749 - 755
  • [25] Improved surface hydrophobicity of self-assembled transport layers enables perovskite/silicon tandem solar cells with efficiency approaching 31%
    Jing Yang
    Jin Wang
    Biao Shi
    Yixin Dong
    Dongxue Liu
    Shenhzhi Xu
    Qian Huang
    Xiaona Du
    Fu Zhang
    Miao Yang
    Yongcai He
    Bo He
    Xiaoning Ru
    Shengzhong Liu
    Xixiang Xu
    Pengyang Wang
    Ying Zhao
    Xiaodan Zhang
    Journal of Energy Chemistry, 2025, 104 (05) : 749 - 755
  • [26] Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells
    Li, Dongyang
    Lian, Qing
    Du, Tao
    Ma, Ruijie
    Liu, Heng
    Liang, Qiong
    Han, Yu
    Mi, Guojun
    Peng, Ouwen
    Zhang, Guihua
    Peng, Wenbo
    Xu, Baomin
    Lu, Xinhui
    Liu, Kuan
    Yin, Jun
    Ren, Zhiwei
    Li, Gang
    Cheng, Chun
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] Perovskite solar cells with NiOx hole-transport layer
    Li, Mengjia
    Zhang, Zuolin
    Sun, Jie
    Liu, Fan
    Chen, Jiangzhao
    Ding, Liming
    Chen, Cong
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (10)
  • [28] Self-assembled monolayer enabling improved buried interfaces in blade-coated perovskite solar cells for high efficiency and stability
    Zeng J.
    Bi L.
    Cheng Y.
    Xu B.
    Jen A.K.-Y.
    Nano Research Energy, 2022, 1 (01):
  • [29] Self-assembled hole-transport material incorporating biphosphonic acid for dual-defect passivation in NiOx-based perovskite solar cells
    Su, Ting
    Liu, Wenjun
    Xu, Hao
    Chen, Huilong
    Wong, Kin Long
    Zhang, Wanru
    Su, Qingting
    Wang, Tongxin
    Xu, Shanlei
    Liu, Xingting
    Lv, Weiwei
    Geng, Renyong
    Yin, Jun
    Song, Xin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (47) : 33066 - 33075
  • [30] Effect of self-assembled monolayer on stability of perovskite LEDs
    Qin, Xinshun
    Ali, Muhammad Umair
    Mo, Hongbo
    Yuan, Zhengtian
    He, Yanling
    Ng, Alan Man Ching
    Djurisic, Aleksandra B.
    PHYSICA B-CONDENSED MATTER, 2025, 701