Fundamental properties of Cauchy-Szego projection on quaternionic Siegel upper half space and applications

被引:1
|
作者
Chang, Der-Chen [1 ,2 ,3 ]
Duong, Xuan Thinh [4 ]
Li, Ji [4 ]
Wang, Wei [5 ]
Wu, Qingyan [6 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Georgetown Univ, Dept Comp Sci, Washington, DC 20057 USA
[3] Fu Jen Catholic Univ, Grad Inst Business Adm, Coll Management, New Taipei City 242, Taiwan
[4] Macquarie Univ, Dept Math, Sydney, NSW 2109, Australia
[5] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[6] Linyi Univ, Dept Math, Linyi 276005, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
Cauchy-Szego projection; quaternionic Siegel upper half space; regularity; pointwise lower bound; Schatten class; PLURISUBHARMONIC-FUNCTIONS; LINEAR ALGEBRA; FUETER COMPLEX; HARDY-SPACES; BERGMAN; DECOMPOSITION; RESOLUTIONS; FORMULA; KERNEL;
D O I
10.1515/forum-2024-0049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy-Szego projection for quaternionic Siegel upper half space to obtain the pointwise (higher order) regularity estimates for Cauchy-Szego kernel and prove that the Cauchy-Szego kernel is nonzero everywhere, which further yields a non-degenerated pointwise lower bound. As applications, we prove the uniform boundedness of Cauchy-Szego projection on every atom on the quaternionic Heisenberg group, which is used to give an atomic decomposition of regular Hardy space ( )H(p )on quaternionic Siegel upper half space for 2/3 < p <= 1. Moreover, we establish the characterisation of singular values of the commutator of Cauchy-Szego projection based on the kernel estimates. The quaternionic structure (lack of commutativity) is encoded in the symmetry groups of regular functions and the associated partial differential equations.
引用
收藏
页码:43 / 74
页数:32
相关论文
共 50 条
  • [41] The Precise Norm of a Class of Forelli-Rudin Type Operators on the Siegel Upper Half Space
    Zhou, Lifang
    Fan, Yun
    Lu, Jin
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1537 - 1546
  • [42] THE PRECISE NORM OF A CLASS OF FORELLI-RUDIN TYPE OPERATORS ON THE SIEGEL UPPER HALF SPACE
    周立芳
    樊云
    卢金
    ActaMathematicaScientia, 2021, 41 (05) : 1537 - 1546
  • [43] Carleson Measures and Toeplitz Operators Between Bergman Spaces on the Siegel Upper Half-space
    Jiajia Si
    Yi Zhang
    Lifang Zhou
    Complex Analysis and Operator Theory, 2022, 16
  • [44] Carleson Measures and Toeplitz Operators Between Bergman Spaces on the Siegel Upper Half-space
    Si, Jiajia
    Zhang, Yi
    Zhou, Lifang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (03)
  • [45] Schatten class positive Toeplitz operators on Bergman spaces of the Siegel upper half-space
    Si, Jiajia
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (02): : 335 - 355
  • [46] Some properties of the inhomogeneous generalized Cauchy-Riemann systems in quaternionic algebra and its applications
    Van, NT
    FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS AND APPLICATIONS, 2004, : 331 - 343
  • [47] The generalized odd half-Cauchy family of distributions: Properties and applications
    Cordeiro, Gauss M.
    Alizadeh, Morad
    Ramires, Thiago G.
    Ortega, Edwin M. M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (11) : 5685 - 5705
  • [48] The Siegel Upper Half Space is a Marsden-Weinstein Quotient: Symplectic Reduction and Gaussian Wave Packets
    Ohsawa, Tomoki
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (09) : 1301 - 1320
  • [49] Fundamental solutions in a half space of two-dimensional hexagonal quasicrystal and their applications
    Wang, T.
    Li, X. Y.
    Zhang, X.
    Mueller, R.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (15)
  • [50] Growth properties of modified α-potentials in the upper-half space
    Qiao, Lei
    Deng, Guantie
    FILOMAT, 2013, 27 (04) : 703 - 712