Self-supervised Heterogeneous Hypergraph Learning with Context-aware Pooling for Graph-level Classification

被引:0
|
作者
Hayat, Malik Khizar [1 ]
Xue, Shan [1 ]
Yang, Jian [1 ]
机构
[1] Macquarie Univ, Sch Comp, Sydney, NSW, Australia
关键词
heterogeneous hypergraph learning; graph neural network; high -order interactions; graph -level classification; context-aware graph-level pooling; self-supervised learning; NEURAL-NETWORK;
D O I
10.1109/ICDM58522.2023.00023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Representation learning in unlabeled heterogeneous graphs has gained significant interest. The heterogeneity in graphs not only provides rich information but also poses challenges to model complex relations in self-supervised learning (SSL) manner. Existing SSL-based approaches are usually designed for node -level tasks and are unable to capture global graph-level features. Also, they often employ computationally expensive meta -path -based techniques, to learn the intrinsic graph structure, that are intractable. Importantly, they overlook non-pairwise relationships among nodes in heterogeneous graphs, for instance in protein -protein interaction networks or collaboration networks, limiting the effectiveness of graph -level learning. To address these issues, we propose a novel selfsupervised heterogeneous hypergraph learning framework that captures the richness of heterogeneity, and high -order connectivity in graph-level classification. Unlike traditional methods that rely on meta -path -based approaches to incorporate high order information, we introduce a k -hop neighborhood strategy to construct intra-graph hyperedges, and a shared attribute based approach for inter-graph hyperedges to construct the heterogeneous hypergraph. Furthermore, we introduce a context aware graph -level pooling mechanism that facilitates adaptive aggregation of relevant information across the hypergraph, considering both local and global contexts. Lastly, we design a self-supervised contrastive learning framework by introducing a high-order-aware adaptive augmentation mechanism. This enables the model to learn meaningful graph -level representations from less -labeled data. We evaluate our proposed model against graph kernels, graph neural networks, and graph pooling-based baselines on real-world datasets, demonstrating an overall performance improvement of 5.81% that validates the effectiveness and superiority of the proposed method.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 50 条
  • [41] GHNN: Graph Harmonic Neural Networks for semi-supervised graph-level classification
    Ju, Wei
    Luo, Xiao
    Ma, Zeyu
    Yang, Junwei
    Deng, Minghua
    Zhang, Ming
    NEURAL NETWORKS, 2022, 151 : 70 - 79
  • [42] Self-supervised Graph Learning with Segmented Graph Channels
    Gao, Hang
    Li, Jiangmeng
    Zheng, Changwen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 13714 : 293 - 308
  • [43] Siamese Network Based Multiscale Self-Supervised Heterogeneous Graph Representation Learning
    Chen, Zijun
    Luo, Lihui
    Li, Xunkai
    Jiang, Bin
    Guo, Qiang
    Wang, Chunpeng
    IEEE ACCESS, 2022, 10 : 98490 - 98500
  • [44] Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning
    Wang, Xiao
    Liu, Nian
    Han, Hui
    Shi, Chuan
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1726 - 1736
  • [45] Self-supervised learning for heterogeneous graph via structure information based on metapath
    Ma, Shuai
    Liu, Jian-wei
    Zuo, Xin
    APPLIED SOFT COMPUTING, 2023, 143
  • [46] Self-supervised context-aware correlation filter for robust landmark tracking in liver ultrasound sequences
    Ma, Lin
    Wang, Junjie
    Gong, Shu
    Lan, Libin
    Geng, Li
    Wang, Siping
    Feng, Xin
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2024, 69 (04): : 383 - 394
  • [47] Geography-Aware Self-Supervised Learning
    Ayush, Kumar
    Uzkent, Burak
    Meng, Chenlin
    Tanmay, Kumar
    Burke, Marshall
    Lobell, David
    Ermon, Stefano
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10161 - 10170
  • [48] Graph Self-supervised Learning with Accurate Discrepancy Learning
    Kim, Dongki
    Baek, Jinheon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [49] Self-Supervised Bidirectional Learning for Graph Matching
    Guo, Wenqi
    Zhang, Lin
    Tu, Shikui
    Xu, Lei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 7784 - 7792
  • [50] Adaptive Self-Supervised Graph Representation Learning
    Gong, Yunchi
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 254 - 259