Active Rehabilitation Gloves Based on Brain-Computer Interfaces and Deep Learning

被引:0
|
作者
Zhu, Jiahua [1 ]
Shi, Xingzhao [2 ]
Cheng, Xingyue [2 ]
Yang, Qirui [2 ]
Xiao, Ruoxiu [2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Shunde Innovat Sch, Foshan 100024, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Electroencephalogram (EEG); Classification; Long Short Term Memory (LSTM); Brain computer interface (BCI); Cerebral Stroke;
D O I
10.4028/p-2Jc2QF
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cerebral stroke is the second leading cause of death and the third leading cause of death and disability in the world, and more than half of these patients have hand dysfunction, making hand rehabilitation an urgent challenge. In this study, a system for hand rehabilitation therapy for stroke patients was designed using novel human-computer interaction technology. The system combines a brain-computer interface, a deep learning algorithm and a rehabilitation glove, and designs an electroencephalogram (EEG) signal acquisition card and a rehabilitation glove to realise the application of motor imagery therapy to the active rehabilitation of patients' hands. On the brain computer interface-based motor imagery experiments, the Long Short Term Memory (LSTM) recurrent neural network algorithm designed in this study achieves an average accuracy of 95.78% for the classification accuracy of mental tasks in seven motor imagery modes, which is important for the active rehabilitation of patients with hand function based on motor imagery-driven rehabilitation.
引用
收藏
页码:49 / 62
页数:14
相关论文
共 50 条
  • [41] Brain-computer interfaces: a review
    Coyle, S
    Ward, T
    Markham, C
    INTERDISCIPLINARY SCIENCE REVIEWS, 2003, 28 (02) : 112 - 118
  • [42] Brain-Computer Interfaces in Medicine
    Shih, Jerry J.
    Krusienski, Dean J.
    Wolpaw, Jonathan R.
    MAYO CLINIC PROCEEDINGS, 2012, 87 (03) : 268 - 279
  • [43] Flexible brain-computer interfaces
    Tang, Xin
    Shen, Hao
    Zhao, Siyuan
    Li, Na
    Liu, Jia
    NATURE ELECTRONICS, 2023, 6 (02) : 109 - 118
  • [44] Multimodal Brain-Computer Interfaces
    Alexander Maye
    Andreas K.Engel
    Tsinghua Science and Technology, 2011, 16 (02) : 133 - 139
  • [45] Brain-computer interfaces (BCIs)
    Berger, Theodore W.
    JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) : 1 - 1
  • [46] An update for brain-computer interfaces
    不详
    NATURE ELECTRONICS, 2024, 7 (09): : 725 - 725
  • [47] Optogenetic Brain-Computer Interfaces
    Tang, Feifang
    Yan, Feiyang
    Zhong, Yushan
    Li, Jinqian
    Gong, Hui
    Li, Xiangning
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [48] The business of brain-computer interfaces
    Smalley, Eric
    NATURE BIOTECHNOLOGY, 2019, 37 (09) : 978 - 982
  • [49] The physiology of brain-computer interfaces
    Cohen, Leonardo G.
    Birbaumer, Niels
    JOURNAL OF PHYSIOLOGY-LONDON, 2007, 579 (03): : 570 - 570
  • [50] The Future of Brain-Computer Interfaces
    Abrams, Zara
    IEEE PULSE, 2022, 13 (06) : 21 - 24