Short-term load forecasting for microgrid energy management system using hybrid SPM-LSTM

被引:23
|
作者
Jahani, Arezoo [1 ,2 ]
Zare, Kazem [1 ]
Khanli, Leyli Mohammad [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz, Iran
[2] Sahand Univ Technol, Fac Elect Engn, Tabriz, Iran
关键词
Short-term load forecasting; Microgrid; Sequential pattern; LSTM; PARTICLE SWARM OPTIMIZATION; ELECTRICITY DEMAND; NEURAL-NETWORK; ARMAX MODEL; PREDICTION; SVM; TEMPERATURE;
D O I
10.1016/j.scs.2023.104775
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Load forecasting in power microgrids and load management systems is still a challenge and needs an accurate method. Although in recent years, short-term load forecasting is done by statistical or learning algorithms. There are still two unsolvable challenges in the conventional data-driven-based prediction methods. The first challenge is that extracting the correlation between metrological and load data still cannot be taken full advantage of, and the other is that extracting patterns independently of the fixed pattern length is not supported. To address these challenges, a fixed SPM-LSTM approach is proposed. SPM for discrete data and LSTM for continuous data. The proposed model uses past consumption, temperature, humidity, wind speed, and weather data. A sequential pattern mining algorithm is used to extract sequential patterns that are independent of the fixed pattern length of correlated data between load and metrological data and can predict only the range of future load. Then, an LSTM network is used for exact load forecasting. It was tested using real data from the consumption and generation data retrieved from the ENTSOE project and its performance was compared with other forecasting methods. Results have shown that the proposed approach with the correlation squared (R2) of 0.951 in the best situation outperformed other methods like LSTM, LSTM-ANN, and CNN-GA. Also, the proposed method reduced training time by one-fifth against others.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Hybrid System Based on LSTM for Short-Term Power Load Forecasting
    Jin, Yu
    Guo, Honggang
    Wang, Jianzhou
    Song, Aiyi
    ENERGIES, 2020, 13 (23)
  • [2] Short-term load forecasting in a hybrid microgrid: a case study in Tanzania
    Mbuya, Benson
    Moncecchi, Matteo
    Merlo, Marco
    Kivevele, Thomas
    JOURNAL OF ELECTRICAL SYSTEMS, 2019, 15 (04) : 593 - 606
  • [3] Short-Term Load Forecasting Using an LSTM Neural Network
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    2020 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2020,
  • [4] Short-term Electricity Load Forecasting for Building Energy Management System
    Saatwong, Phanumat
    Suwankawin, Surapong
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [5] Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model
    Yufeng Yin
    Wenbo Wang
    Min Yu
    Transactions on Electrical and Electronic Materials, 2024, 25 : 265 - 279
  • [6] Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system
    Mounir, Nada
    Ouadi, Hamid
    Jrhilifa, Ismael
    ENERGY AND BUILDINGS, 2023, 288
  • [7] Short-Term Load Forecasting of Microgrid Based on TVFEMD-LSTM-ARMAX Model
    Yin, Yufeng
    Wang, Wenbo
    Yu, Min
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2024, 25 (03) : 265 - 279
  • [8] Deep Learning-Assisted Short-Term Load Forecasting for Sustainable Management of Energy in Microgrid
    Moradzadeh, Arash
    Moayyed, Hamed
    Zakeri, Sahar
    Mohammadi-Ivatloo, Behnam
    Aguiar, A. Pedro
    INVENTIONS, 2021, 6 (01) : 1 - 11
  • [9] Short-Term Load Forecasting Using Hybrid GMDH-LSTM Model Optimized by ICPA
    Chen, Gonggui
    Bai, Jie
    Chen, Tewei
    Wang, Wei
    Wang, Zongfu
    Long, Hongyu
    Zou, Mi
    ENGINEERING LETTERS, 2022, 30 (04)
  • [10] Forecasting Short-Term Electric Load with a Hybrid of ARIMA Model and LSTM Network
    Pooniwala, Nevil
    Sutar, Rajendra
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,