Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system

被引:102
|
作者
Mounir, Nada [1 ]
Ouadi, Hamid [1 ]
Jrhilifa, Ismael [1 ]
机构
[1] Mohammed V Univ Rabat, ERERA, ENSAM Rabat, Rabat, Morocco
关键词
EMD; IMF; Energy optimization; Power forecasting; Deep learning; LSTM;
D O I
10.1016/j.enbuild.2023.113022
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Electricity is an essential resource for human production and survival. Accurately predicting electrical load consumption can help power supply companies make informed decisions, such as peak load shifting, to maintain a reliable power supply and reduce CO2 emissions. However, forecasting electricity con-sumption is challenging due to the nonlinear and nonstationary time series data that is correlated with climate change. To address this challenge, this paper proposes an electricity forecasting method based on empirical mode decomposition (EMD) and bidirectional LSTM. EMD is a solid and robust instrument for time-frequency analysis and signal preprocessing, which separates the time series into components at different resolutions. The proposed model predicts the future 24 h with a resolution of 15 min by creating many stationary component sequences from the original stochastic electricity usage time series data (IMFs). To predict each Intrinsic Mode Function, a hybrid model BI-LSTM is employed. The results of each component's forecast are then merged to give the overall forecast. Two comparative studies are con-ducted to justify the choice of the signal processing method and the prediction algorithm. The proposed model demonstrates a minimal MAPE of 0.28% and a better R2 close to 1 of 0.84 compared to other papers. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Efficient grid management: smart forecasting of short-term power load using PSO-LSTM
    Badjan, Ansumana
    Rashed, Ghamgeen Izat
    Bahageel, Ahmed O. M.
    Gony, Hashim
    Shaheen, Husam, I
    Tuaimah, Firas Mohammed
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [2] Research on Short-term Load Forecasting Approach for Smart Grid
    Lv, Yue-chun
    Xu, Xin
    Xu, Rui-lin
    Ren, Haijun
    2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2019, : 602 - 605
  • [3] Short-Term Load Forecasting Using Optimized LSTM Networks Based on EMD
    Li, Tiantian
    Wang, Bo
    Zhou, Min
    Zhang, Lianming
    Zhao, Xin
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 84 - 88
  • [4] An Efficient Regional Short-Term Load Forecasting Model for Smart Grid Energy Management
    Muzumdar, Ajit
    Modi, Chirag
    Vyjayanthi, C.
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 2089 - 2094
  • [5] Short-term load forecasting for microgrid energy management system using hybrid SPM-LSTM
    Jahani, Arezoo
    Zare, Kazem
    Khanli, Leyli Mohammad
    SUSTAINABLE CITIES AND SOCIETY, 2023, 98
  • [6] Short-Term Load Forecasting Using an LSTM Neural Network for a Grid Operator
    Caicedo-Vivas, Joan Sebastian
    Alfonso-Morales, Wilfredo
    ENERGIES, 2023, 16 (23)
  • [7] A Novel Hybrid Short-Term Load Forecasting Method of Smart Grid Using MLR and LSTM Neural Network
    Li, Jian
    Deng, Daiyu
    Zhao, Junbo
    Cai, Dongsheng
    Hu, Weihao
    Zhang, Man
    Huang, Qi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2443 - 2452
  • [8] An attention-basedCNN-LSTM-BiLSTMmodel for short-term electric load forecasting in integrated energy system
    Wu, Kuihua
    Wu, Jian
    Feng, Liang
    Yang, Bo
    Liang, Rong
    Yang, Shenquan
    Zhao, Ren
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (01):
  • [9] Designing a short-term load forecasting model in the urban smart grid system
    Li, Chen
    APPLIED ENERGY, 2020, 266
  • [10] The Short-term Load Forecasting of Electric System
    Wang, Zhaoyuan
    Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016, 71 : 438 - 441