Surface Defect Detection for Automated Tape Laying and Winding Based on Improved YOLOv5

被引:0
|
作者
Wen, Liwei [1 ]
Li, Shihao [1 ]
Ren, Jiajun [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[2] Haiying Aerosp Mat Res Inst Suzhou Co Ltd, Suzhou 215100, Peoples R China
关键词
automated tape laying and winding; surface defect detection; YOLOv5;
D O I
10.3390/ma16155291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To address the issues of low detection accuracy, slow detection speed, high missed detection rate, and high false detection rate in the detection of surface defects on pre-impregnated composite materials during the automated tape laying and winding process, an improved YOLOv5 (You Only Look Once version 5) algorithm model was proposed to achieve the high-precision, real-time detection of surface defects. By leveraging this improvement, the necessity for frequent manual interventions, inspection interventions, and subsequent rework during the automated lay-up process of composite materials can be significantly reduced. Firstly, to improve the detection accuracy, an attention mechanism called "CA (coordinate attention)" was introduced to enhance the feature extraction ability, and a Separate CA structure was used to improve the detection speed. Secondly, we used an improved loss function "SIoU (SCYLLA-Intersection over Union) loss" to replace the original "CIoU (Complete-Intersection over Union) loss", which introduced an angle loss as a penalty term to consider the directional factor and improve the stability of the target box regression. Finally, Soft-SIoU-NMS was used to replace the original NMS (non-maximum suppression) of YOLOv5 to improve the detection of overlapping defects. The results showed that the improved model had a good detection performance for surface defects on pre-impregnated composite materials during the automated tape laying and winding process. The FPS (frames per second) increased from 66.7 to 72.1, and the mAP (mean average precision) of the test set increased from 92.6% to 97.2%. These improvements ensured that the detection accuracy, as measured by the mAP, surpassed 95%, while maintaining a detection speed of over 70 FPS, thereby meeting the requirements for real-time online detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Strip Surface Defect Detection Algorithm Based on YOLOv5
    Wang, Han
    Yang, Xiuding
    Zhou, Bei
    Shi, Zhuohao
    Zhan, Daohua
    Huang, Renbin
    Lin, Jian
    Wu, Zhiheng
    Long, Danfeng
    MATERIALS, 2023, 16 (07)
  • [32] Surface Defect Detection of Industrial Parts Based on YOLOv5
    Le, Hai Feng
    Zhang, Lu Jia
    Liu, Yan Xia
    IEEE ACCESS, 2022, 10 : 130784 - 130794
  • [33] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [34] Railway fastener defect detection based on improved YOLOv5 algorithm
    Su, Zhitong
    Han, Kai
    Song, Wei
    Ning, Keqing
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1923 - 1927
  • [35] Application of improved YOLOV5 in plate defect detection
    Xiong, Chenglong
    Hu, Sanbao
    Fang, Zhigang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022,
  • [36] A Sewer Pipeline Defect Detection Method Based on Improved YOLOv5
    Wang, Tong
    Li, Yuhang
    Zhai, Yidi
    Wang, Weihua
    Huang, Rongjie
    PROCESSES, 2023, 11 (08)
  • [37] A rail fastener defect detection algorithm based on improved YOLOv5
    Wang, Ling
    Zang, Qiuyu
    Zhang, Kehua
    Wu, Lintong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2024, 238 (07) : 851 - 862
  • [38] An Improved YOLOv5 Algorithm for Wood Defect Detection Based on Attention
    Han, Siyu
    Jiang, Xiangtao
    Wu, Zhenyu
    IEEE ACCESS, 2023, 11 : 71800 - 71810
  • [39] Defect Detection of Wheel Set Tread Based on Improved YOLOv5
    Sun Yaoze
    Gao Junwei
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [40] Improved Fabric Defect Detection Algorithm of YOLOv5
    Ma, Ahui
    Zhu, Shuangwu
    Li, Choudan
    Ma, Xiaotong
    Wang, Shihao
    Computer Engineering and Applications, 2023, 59 (10) : 244 - 252