Ground state solution for a periodic p&q-Laplacian equation involving critical growth without the Ambrosetti-Rabinowitz condition

被引:1
|
作者
Shen, Liejun [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua, Zhejiang, Peoples R China
关键词
Ambrosetti-Rabinowitz condition; compactness-concentration principle; critical; ground state solution; p&q-Laplacian equation; Q ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; NONTRIVIAL SOLUTIONS; EXISTENCE; (P; MULTIPLICITY; Q)-LAPLACIAN;
D O I
10.1002/mma.9135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the ground state solutions for the following p & q-Laplacian equation {-delta(p)u - delta(q)u + V(x)(|u|(p-2)u + |u|(q-2)u) =lambda K(x)f(u) + |u|(q & lowast;-2)u, x is an element of R-N,u is an element of W-1,W-p(RN) & cap; W-1,W-q(R-N), where lambda > 0 is a parameter large enough, delta(r)u = div(|& nabla;u|(r-2)& nabla;u) with r is an element of {p, q} denotes the r-Laplacian operator, 1 < p < q < N and q(& lowast;) = Nq/(N - q). Under some assumptions for the periodic potential V, weight function K and non linearity f without the Ambrosetti-Rabinowitz condition, we show the above equation has a ground state solution.
引用
收藏
页码:10499 / 10511
页数:13
相关论文
共 50 条