Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties

被引:12
|
作者
Ansari, Mohammad Aftab Alam [1 ,2 ]
Jain, Prashant Kumar [2 ]
Nanda, Himansu Sekhar [1 ,3 ,4 ]
机构
[1] PDPM Indian Inst Informat Technol Design & Mfg Jab, Biomed Engn & Technol Lab, Mech Engn Discipline, Jabalpur, Madhya Pradesh, India
[2] PDPM Indian Inst Informat Technol Design & Mfg Jab, Fused Filament Fabricat Lab, Mech Engn Discipline, Jabalpur, Madhya Pradesh, India
[3] Terasaki Inst Biomed Innovat TIBI, Los Angeles, CA USA
[4] PDPM Indian Inst Informat Technol Design & Mfg Jab, Biomed Engn & Technol Lab, Mech Engn Discipline, Jabalpur 482005, Madhya Pradesh, India
关键词
Composite filament; fused filament fabrication; 3D printing; porous scaffolds; mechanical strength; degradation; tissue engineering; BIOLOGICAL-PROPERTIES; BONE; PHOSPHATE; CEMENT;
D O I
10.1080/09205063.2023.2167374
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Scaffold is one of the key components for tissue engineering application. Three-dimensional (3D) printing has given a new avenue to the scaffolds design to closely mimic the real tissue. However, material selection has always been a challenge in adopting 3D printing for scaffolds fabrication, especially for hard tissue. The fused filament fabrication technique is one of the economical 3D printing technology available today, which can efficiently fabricate scaffolds with its key features. In the present study, a hybrid polymer-ceramic scaffold has been prepared by combining the benefit of synthetic biodegradable poly (lactic acid) (PLA) and osteoconductive calcium sulphate (CaS), to harness the advantage of both materials. Composite PLA filament with maximum ceramic loading of 40 wt% was investigated for its printability and subsequently scaffolds were 3D printed. The composite filament was extruded at a temperature of 160 degrees C at a constant speed with an average diameter of 1.66 +/- 0.34 mm. PLA-CaS scaffold with ceramic content of 10%, 20%, and 40% was 3D printed with square pore geometry. The developed scaffolds were characterized for their thermal stability, mechanical, morphological, and geometrical accuracy. The mechanical strength was improved by 29% at 20 wt% of CaS. The porosity was found to be 50-60% with an average pore size of 550 mu m with well-interconnected pores. The effect of CaS particles on the degradation behaviour of scaffolds was also assessed over an incubation period of 28 days. The CaS particles acted as porogen and improved the surface chemistry for future cellular activity, while accelerating the degradation rate.
引用
收藏
页码:1408 / 1429
页数:22
相关论文
共 50 条
  • [31] The Osteogenesis and Degradation of 3D Printed Calcium Silicate/Polydopamine/Polycaprolactone Scaffolds for Bone Regeneration
    Ho, C.
    Wang, K.
    Shie, M.
    Chen, Y.
    Wang, B.
    TISSUE ENGINEERING PART A, 2017, 23 : S105 - S105
  • [32] Tuning mechanical properties of 3D printed composites with PLA:TPU programmable filaments
    Darnal, Aryabhat
    Shahid, Zaryab
    Deshpande, Himani
    Kim, Jeeeun
    Muliana, Anastasia
    COMPOSITE STRUCTURES, 2023, 318
  • [33] Effect of protective coatings on the water absorption and mechanical properties of 3D printed PLA
    Vicente, Carlos M. S.
    Fernandes, Joao
    Reis, Luis
    de Deus, Augusto Moita
    Vaz, M. F.
    Leite, Marco
    FRATTURA ED INTEGRITA STRUTTURALE, 2019, 13 (48): : 748 - 756
  • [34] Effect of process parameters on mechanical properties of 3D printed PLA lattice structures
    Tang, Can
    Liu, Junwei
    Yang, Yang
    Liu, Ye
    Jiang, Shiping
    Hao, Wenfeng
    COMPOSITES PART C: OPEN ACCESS, 2020, 3
  • [35] 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold
    Singh, Sunpreet
    Singh, Gurminder
    Prakash, Chander
    Ramakrishna, Seeram
    Lamberti, Luciano
    Pruncu, Catalin, I
    POLYMER TESTING, 2020, 89
  • [36] Investigation of printing parameters effects on mechanical and failure properties of 3D printed PLA
    Benamira, Mohamed
    Benhassine, Naamane
    Ayad, Amar
    Dekhane, Azzeddine
    ENGINEERING FAILURE ANALYSIS, 2023, 148
  • [37] A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA
    Lanzotti, Antonio
    Martorelli, Massimo
    Maietta, Saverio
    Gerbino, Salvatore
    Penta, Francesco
    Gloria, Antonio
    12TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2019, 79 : 143 - 146
  • [38] Experimental evaluation of the mechanical and thermal properties of 3D printed PLA and its composites
    Vinyas, M.
    Athul, S. J.
    Harursampath, D.
    Thoi, T. Nguyen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [39] Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds
    Jiang, Zhongliang
    Shaha, Rajib
    Jiang, Kun
    McBride, Ralph
    Frick, Carl
    Oakey, John
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2019, 18 (02) : 261 - 264
  • [40] Degradation of 3D printed poly(propylene fumarate) scaffolds
    Wang, M. O.
    Piard, C.
    Dreher, M. L.
    Melchiorri, A.
    Fisher, J. P.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 443 - 443