Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems

被引:90
|
作者
Zhang, Qingke [1 ]
Gao, Hao [1 ]
Zhan, Zhi-Hui [2 ]
Li, Junqing [1 ]
Zhang, Huaxiang [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
关键词
Metaheuristic algorithms; Growth optimizer; Global optimization; Multiple sequence alignment; Image segmentation; INSPIRED ALGORITHM; SEARCH; EVOLUTION;
D O I
10.1016/j.knosys.2022.110206
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel and powerful metaheuristic optimizer, named the growth optimizer (GO), is proposed. Its main design inspiration originates from the learning and reflection mechanisms of individuals in their growth processes in society. Learning is the process of individuals growing up by acquiring knowledge from the outside world. Reflection is the process of checking the individual's own deficiencies and adjusting the individual's learning strategies to help the individual's growth. This work simulates this growth behavior mathematically and benchmarks the proposed algorithm on a total of 30 international test functions of the 2017 IEEE Congress on Evolutionary Computation real-parameter boundary constraint benchmark (CEC 2017 test suite). A total of 50 state-of-the-art metaheuristic algorithms participated in the comparison process. The results of the convergence accuracy comparison and the two nonparametric statistics based on the Friedman test and the Wilcoxon signed-rank test showed that GO provides competitive results compared to the 50 state-ofthe-art metaheuristic algorithms tested. In addition, to verify that GO has the ability to solve different real-world optimization problems, GO was applied to two different types of real-world optimization problems: the multiple sequence alignment (MSA) problem based on the hidden Markov model (HMM) and the multithresholding image segmentation problem based on Kapur's entropy method. GO provided more promising results than other metaheuristic techniques, especially in terms of solution quality and avoidance of local optima. The source code of the GO algorithm is publicly available at https://github.com/tsingke/Growth-Optimizer.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
    Hashim, Fatma A.
    Hussain, Kashif
    Houssein, Essam H.
    Mabrouk, Mai S.
    Al-Atabany, Walid
    APPLIED INTELLIGENCE, 2021, 51 (03) : 1531 - 1551
  • [22] Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
    Fatma A. Hashim
    Kashif Hussain
    Essam H. Houssein
    Mai S. Mabrouk
    Walid Al-Atabany
    Applied Intelligence, 2021, 51 : 1531 - 1551
  • [23] Multi-Agent cubature Kalman optimizer: A novel metaheuristic algorithm for solving numerical optimization problems
    Musa Z.
    Ibrahim Z.
    Shapiai M.I.
    International Journal of Cognitive Computing in Engineering, 2024, 5 : 140 - 152
  • [24] Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Khodadadi, Nima
    Mirjalili, Seyedali
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 174
  • [25] The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
    Shadravan, S.
    Naji, H. R.
    Bardsiri, V. K.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 80 : 20 - 34
  • [26] The water optimization algorithm: a novel metaheuristic for solving optimization problems
    Arman Daliri
    Ali Asghari
    Hossein Azgomi
    Mahmoud Alimoradi
    Applied Intelligence, 2022, 52 : 17990 - 18029
  • [27] The water optimization algorithm: a novel metaheuristic for solving optimization problems
    Daliri, Arman
    Asghari, Ali
    Azgomi, Hossein
    Alimoradi, Mahmoud
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17990 - 18029
  • [28] OOBO: A New Metaheuristic Algorithm for Solving Optimization Problems
    Dehghani, Mohammad
    Trojovska, Eva
    Trojovsky, Pavel
    Malik, Om Parkash
    BIOMIMETICS, 2023, 8 (06)
  • [29] A chaos-based adaptive equilibrium optimizer algorithm for solving global optimization problems
    Liu, Yuting
    Ding, Hongwei
    Wang, Zongshan
    Jin, Gushen
    Li, Bo
    Yang, Zhijun
    Dhiman, Gaurav
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 17242 - 17271
  • [30] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Azizi, Mahdi
    Aickelin, Uwe
    Khorshidi, Hadi A.
    Shishehgarkhaneh, Milad Baghalzadeh
    SCIENTIFIC REPORTS, 2023, 13 (01):