A maximum-entropy-attention-based convolutional neural network for image perception

被引:2
|
作者
Chen, Qili [1 ]
Zhang, Ancai [2 ]
Pan, Guangyuan [2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
[2] Linyi Univ, Sch Automat & Elect Engn, Linyi 276000, Shandong, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 12期
基金
中国国家自然科学基金;
关键词
Machine learning; Image enhancement; Image processing; Feature extraction; Hybrid intelligence; FUZZY ENTROPY; ENSEMBLE;
D O I
10.1007/s00521-022-07564-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, image perception such as enhancement, classification and object detection with deep learning has achieved significant successes. However, in real world under extreme conditions, the training of a deep learning model often yields low accuracy, low efficiency in feature extraction and generalizability, due to the inner uncourteous and uninterpretable characteristics. In this paper, a maximal-entropy-attention-based convolutional neural network (MEA-CNN) framework is proposed. A maximum entropy algorithm is first used for image feature pre-extraction. An attention mechanism is then proposed by combining the extracted features on original images. By applying the mechanism, the key areas of an image are enhanced, and noised area can be ignored. Afterward, the processed images are transferred into region convolutional neural network, which is a well-known pre-trained CNN model, for further feature learning and extraction. Finally, two real-world experiments on traffic sign recognition and road surface condition monitoring are designed. The results show that the proposed framework has high testing accuracy, with improvements of 17% and 2.9%, compared with some other existing methods. In addition, the features extracted by the model are more easily interpretable.
引用
收藏
页码:8647 / 8655
页数:9
相关论文
共 50 条
  • [41] Microphone Identification based on Spectral Entropy with Convolutional Neural Network
    Baldini, Gianmarco
    Amerini, Irene
    2022 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2022,
  • [42] Convolutional Neural Network Compression Based on Adaptive Layer Entropy
    Wei Y.-X.
    Chen Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2398 - 2408
  • [43] Gastrointestinal Image Classification based on Convolutional Neural Network
    Wang, Shuo
    Gao, Pengfei
    Peng, Hui
    2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 42 - 48
  • [44] Image Retrieval Algorithm Based on Convolutional Neural Network
    Liu, Hailong
    Li, Baoan
    Lv, Xueqiang
    Huang, Yue
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 278 - 281
  • [45] Face Image Recognition Based on Convolutional Neural Network
    Guangxin Lou
    Hongzhen Shi
    中国通信, 2020, 17 (02) : 117 - 124
  • [46] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [47] Image Forgery Detection Based on the Convolutional Neural Network
    Feng Guorui
    Wu Jian
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 266 - 270
  • [48] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [49] Image Retrieval Algorithm based on Convolutional Neural Network
    Huang, Wen-qing
    Wu, Qiang
    CURRENT TRENDS IN COMPUTER SCIENCE AND MECHANICAL AUTOMATION, VOL 1, 2017, : 304 - 314
  • [50] Convolutional Neural Network Based Image Segmentation: A Review
    Ajmal, Hina
    Rehman, Saad
    Farooq, Umar
    Ain, Qurrat U.
    Riaz, Farhan
    Hassan, Ali
    PATTERN RECOGNITION AND TRACKING XXIX, 2018, 10649