Fractional Edgeworth expansions for one-dimensional heavy-tailed random variables and applications

被引:0
|
作者
Chiarini, Leandro [1 ]
Jara, Milton [2 ]
Ruszel, Wioletta M. [1 ]
机构
[1] Univ Utrecht, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
来源
基金
荷兰研究理事会;
关键词
fractional Edgeworth expansion; local central limit theorem; potential kernel; stable distributions; heavy-tailed random walks; fluctuations; discrete stochastic linear stochastic equations; GAUSSIAN FIELDS; SCALING LIMIT; FORMULA;
D O I
10.1214/23-EJP996
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study a class of lattice random variables in the domain of attraction of an alpha-stable random variable with index alpha is an element of (0, 2) which satisfy a truncated fractional Edgeworth expansion. Our results include studying the class of such fractional Edgeworth expansions under simple operations, providing concrete examples; sharp rates of convergence to an alpha-stable distribution in a local central limit theorem; Green's function expansions; and finally fluctuations of a class of discrete stochastic PDE's driven by the heavy-tailed random walks belonging to the class of fractional Edgeworth expansions.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] Large deviations for truncated heavy-tailed random variables: A boundary case
    Arijit Chakrabarty
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 671 - 703
  • [22] Asymptotic Behavior of Product of Two Heavy-tailed Dependent Random Variables
    Vahid RANJBAR
    Mohammad AMINI
    Jaap GELUK
    Abolghasem BOZORGNIA
    数学学报, 2013, 56 (02) : 295 - 295
  • [23] Edgeworth expansions for weakly dependent random variables
    Fernando, Kasun
    Liverani, Carlangelo
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 469 - 505
  • [24] Asymptotic Behavior of Convolution of Dependent Random Variables with Heavy-Tailed Distributions
    Ranjbar, Vahid Y.
    Amini, Mohammad
    Bozorgnia, Abolghasem
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (01): : 21 - 34
  • [25] A symptotic Behavior of Convolution of Dependent Random Variables with Heavy-Tailed Distributions
    Ranjbar, V. Y.
    Amini, M.
    Bozorgnia, A.
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (02): : 217 - 230
  • [26] Limit Theorems for Sums of Heavy-tailed Variables with Random Dependent Weights
    Stilian A. Stoev
    Murad S. Taqqu
    Methodology and Computing in Applied Probability, 2007, 9 : 55 - 87
  • [27] Asymptotic behavior of product of two heavy-tailed dependent random variables
    Ranjbar, Vahid
    Amini, Mohammad
    Geluk, Jaap
    Bozorgnia, Abolghasem
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (02) : 355 - 364
  • [28] The divisible sandpile with heavy-tailed variables
    Cipriani, Alessandra
    Hazra, Rajat Subhra
    Ruszel, Wioletta M.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (09) : 3054 - 3081
  • [29] Heavy-tailed fractional Pearson diffusions
    Leonenko, N. N.
    Papic, I.
    Sikorskii, A.
    Suvak, N.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (11) : 3512 - 3535
  • [30] Heavy-tailed distributions and their applications
    Su, C
    Tang, QH
    PROBABILITY, FINANCE AND INSURANCE, 2004, : 218 - 236