Fractional Edgeworth expansions for one-dimensional heavy-tailed random variables and applications

被引:0
|
作者
Chiarini, Leandro [1 ]
Jara, Milton [2 ]
Ruszel, Wioletta M. [1 ]
机构
[1] Univ Utrecht, Budapestlaan 6, NL-3584 CD Utrecht, Netherlands
[2] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
来源
基金
荷兰研究理事会;
关键词
fractional Edgeworth expansion; local central limit theorem; potential kernel; stable distributions; heavy-tailed random walks; fluctuations; discrete stochastic linear stochastic equations; GAUSSIAN FIELDS; SCALING LIMIT; FORMULA;
D O I
10.1214/23-EJP996
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study a class of lattice random variables in the domain of attraction of an alpha-stable random variable with index alpha is an element of (0, 2) which satisfy a truncated fractional Edgeworth expansion. Our results include studying the class of such fractional Edgeworth expansions under simple operations, providing concrete examples; sharp rates of convergence to an alpha-stable distribution in a local central limit theorem; Green's function expansions; and finally fluctuations of a class of discrete stochastic PDE's driven by the heavy-tailed random walks belonging to the class of fractional Edgeworth expansions.
引用
收藏
页数:42
相关论文
共 50 条