Lagrangian multiforms provide a variational framework to describe integrable hierarchies. The case of Lagrangian 1-forms covers finite-dimensional integrable systems. We use the theory of Lie dialgebras introduced by Semenov-Tian-Shansky to construct a Lagrangian 1-form. Given a Lie dialgebra associated with a Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}$$\end{document} and a collection Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_k$$\end{document}, k=1,MIDLINE HORIZONTAL ELLIPSIS,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,\dots ,N$$\end{document}, of invariant functions on g*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}<^>*$$\end{document}, we give a formula for a Lagrangian multiform describing the commuting flows for Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_k$$\end{document} on a coadjoint orbit in g*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {g}<^>*$$\end{document}. We show that the Euler-Lagrange equations for our multiform produce the set of compatible equations in Lax form associated with the underlying r-matrix of the Lie dialgebra. We establish a structural result which relates the closure relation for our multiform to the Poisson involutivity of the Hamiltonians Hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_k$$\end{document} and the so-called double zero on the Euler-Lagrange equations. The construction is extended to a general coadjoint orbit by using reduction from the free motion of the cotangent bundle of a Lie group. We illustrate the dialgebra construction of a Lagrangian multiform with the open Toda chain and the rational Gaudin model. The open Toda chain is built using two different Lie dialgebra structures on sl(N+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {sl}(N+1)$$\end{document}. The first one possesses a non-skew-symmetric r-matrix and falls within the Adler-Kostant-Symes scheme. The second one possesses a skew-symmetric r-matrix. In both cases, the connection with the well-known descriptions of the chain in Flaschka and canonical coordinates is provided.