A Convolutional Neural Network Based on Soft Attention Mechanism and Multi-Scale Fusion for Skin Cancer Classification

被引:2
|
作者
Bao, Qiwei [1 ]
Han, Hua [1 ]
Huang, Li [1 ]
Muzahid, A. A. M. [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
基金
上海市自然科学基金; 国家重点研发计划;
关键词
Deep learning; CNNs; soft attention mechanism; multi-scale fusion; MODEL;
D O I
10.1142/S0218001423560244
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The seven most common skin diseases are melanocytic nevus, melanoma, benign keratosis, basal cell carcinoma, actinic keratosis, vascular lesions, and dermatofibroma. Among them, melanoma has been identified as one of the deadliest cancers based on medical studies and research. The current trend in disease detection revolves around the use of machine learning and deep learning models. Regardless of the model used, the crucial aspect is achieving accurate classification for these diseases. With the emergence of powerful convolutional neural networks (CNNs), significant progress has been made in classification of skin cancer lesions in recent years. However, various challenges hinder the development of practical and effective solutions. First, due to the specific nature of skin cancer lesion images, the current deep neural network architectures and training strategies have poor adaptability to medical images. They are also prone to gradient vanishing issues during network iteration, which hinders the construction of high-performance deep learning models that leverage distinctive characteristics of skin lesion images. Second, there exists a discordance between skin lesion images and deep learning network structures. To address these issues, this study introduces a soft attention mechanism to enhance adaptability to skin cancer lesion images and improve the extraction of informative features from medical images. Additionally, a novel multi-scale fusion convolutional neural network model is proposed to overcome the mismatch between deep learning CNN architectures and skin lesion images. This model autonomously extracts appearance features from raw dermatological medical images. Comparisons with other popular techniques demonstrate the effectiveness of the proposed model, which can achieve an accuracy of 93.9% on HAM10000 dataset. There is ongoing research to overcome the remaining challenges and further enhance the performance of skin cancer classification algorithms.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Desert classification based on a multi-scale residual network with an attention mechanism
    Liguo Weng
    Lexuan Wang
    Min Xia
    Huixiang Shen
    Jia Liu
    Yiqing Xu
    Geosciences Journal, 2021, 25 : 387 - 399
  • [32] Multi-Scale Visual Attention Deep Convolutional Neural Network for Multi-Focus Image Fusion
    Lai, Rui
    Li, Yongxue
    Guan, Juntao
    Xiong, Ai
    IEEE ACCESS, 2019, 7 : 114385 - 114399
  • [33] A Multi-Scale Fusion Convolutional Neural Network for Face Detection
    Chen, Qiaosong
    Meng, Xiaomin
    Li, Wen
    Fu, Xingyu
    Deng, Xin
    Wang, Jin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1013 - 1018
  • [34] Dynamic graph convolutional network for assembly behavior recognition based on attention mechanism and multi-scale feature fusion
    Chen, Chengjun
    Zhao, Xicong
    Wang, Jinlei
    Li, Dongnian
    Guan, Yuanlin
    Hong, Jun
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Dynamic graph convolutional network for assembly behavior recognition based on attention mechanism and multi-scale feature fusion
    Chengjun Chen
    Xicong Zhao
    Jinlei Wang
    Dongnian Li
    Yuanlin Guan
    Jun Hong
    Scientific Reports, 12
  • [36] BACNN: Multi?scale feature fusion?based bilinear attention convolutional neural network for wood NIR classification
    Zihao Wan
    Hong Yang
    Jipan Xu
    Hongbo Mu
    Dawei Qi
    Journal of Forestry Research, 2024, 35 (04) : 206 - 218
  • [37] A Multi-Feature Fusion Model Based on Denoising Convolutional Neural Network and Attention Mechanism for Image Classification
    Zhang, Jingsi
    Yu, Xiaosheng
    Lei, Xiaoliang
    Wu, Chengdong
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2023, 14 (02)
  • [38] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07): : 2969 - 2980
  • [39] MFANet: Multi-scale feature fusion network with attention mechanism
    Gaihua Wang
    Xin Gan
    Qingcheng Cao
    Qianyu Zhai
    The Visual Computer, 2023, 39 : 2969 - 2980
  • [40] A three dimensional convolutional neural network pulmonary nodule detection algorithm based on the multi-scale attention mechanism
    Zhao Y.
    Peng Z.
    Ma J.
    Xia H.
    Wan H.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2022, 39 (02): : 320 - 328