Fake news detection using knowledge graph and graph convolutional network

被引:0
|
作者
Vy Duong Kim Nguyen [1 ]
Phuc Do [1 ]
机构
[1] Vietnam Natl Univ, Univ Informat Technol, Ho Chi Minh City, Vietnam
关键词
Fake news detection; graph convolutional network; semi-supervised; K-nearest neighbor; word mover's distance;
D O I
10.3233/JIFS-233260
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
People will increasingly get expedited and diverse means of accessing news as societies progress. Furthermore, there is a noticeable increase in the prevalence of incorrect and misleading information. Our research is motivated by the significant concerns regarding the detrimental impacts of disinformation on the general public, political stability, and trust in the media. The scarcity of Vietnamese-language datasets can be attributed to the predominant focus of false news detection studies on datasets only in English. Detection investigations of fake news have predominantly relied on supervised machine learning algorithms, which possess notable limitations when confronted with unclassified news articles that are either authentic or untrue. The utilization of Knowledge Graphs (KG) and Graph Convolutional Networks (GCN) holds promise in addressing the constraints of supervised machine learning algorithms. To address these problems, we propose an approach that integrates KG)into the procedure for detecting fake news. We utilize the Vietnamese Fake News Detection dataset (VFND-vietnamese-fake-news), comprising authentic and deceptive news articles from reputable Vietnamese newspapers such as vnexpress, tuoitre, and have been collected from 2018 to 2023. News articles are only labeled as real or fake after experiencing independent verification. The Glove embedding (Global Vectors for Word Representation) is employed to establish a knowledge network for the given dataset. This knowledge graph's construction is accomplished using the Word Mover's Distance (WMD) algorithm in conjunction with the K-nearest neighbor approach; GCN approach and the input KG train models to discern between real and fake news. With labeling half of the input dataset, the experimental findings indicate a notable level of accuracy, reaching up to 85%. Our research holds significant importance in identifying fake news, particularly within the context of the Vietnamese language.
引用
收藏
页码:11107 / 11119
页数:13
相关论文
共 50 条
  • [31] FANG: Leveraging Social Context for Fake News Detection Using Graph Representation
    Nguyen, Van-Hoang
    Sugiyama, Kazunari
    Nakov, Preslav
    Kan, Min-Yen
    COMMUNICATIONS OF THE ACM, 2022, 65 (04) : 124 - 132
  • [32] FANG: Leveraging Social Context for Fake News Detection Using Graph Representation
    Nguyen, Van-Hoang
    Sugiyama, Kazunari
    Nakov, Preslav
    Kan, Min-Yen
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1165 - 1174
  • [33] Inter-modal Fusion Network with Graph Structure Preserving for Fake News Detection
    Liu, Jing
    Wu, Fei
    Jin, Hao
    Zhu, Xiaoke
    Jing, Xiao-Yuan
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT VI, 2024, 14452 : 280 - 291
  • [34] Multiknowledge and LLM-Inspired Heterogeneous Graph Neural Network for Fake News Detection
    Xie, Bingbing
    Ma, Xiaoxiao
    Shan, Xue
    Beheshti, Amin
    Yang, Jian
    Fan, Hao
    Wu, Jia
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024,
  • [35] Game-on: graph attention network based multimodal fusion for fake news detection
    Dhawan, Mudit
    Sharma, Shakshi
    Kadam, Aditya
    Sharma, Rajesh
    Kumaraguru, Ponnurangam
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [36] IARNet: An Information Aggregating and Reasoning Network over Heterogeneous Graph for Fake News Detection
    Yu, Junshuai
    Huang, Qi
    Zhou, Xiaofei
    Sha, Ying
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [37] Adversarial Active Learning based Heterogeneous Graph Neural Network for Fake News Detection
    Ren, Yuxiang
    Wang, Bo
    Zhang, Jiawei
    Chang, Yi
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 452 - 461
  • [38] GAMC: An Unsupervised Method for Fake News Detection Using Graph Autoencoder with Masking
    Yin, Shu
    Zhu, Peican
    Wu, Lianwei
    Gao, Chao
    Wang, Zhen
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 347 - 355
  • [39] Graph global attention network with memory: A deep learning approach for fake news detection
    Chang, Qian
    Li, Xia
    Duan, Zhao
    NEURAL NETWORKS, 2024, 172
  • [40] Modelling Social Context for Fake News Detection: A Graph Neural Network Based Approach
    Saikia, Pallabi
    Gundale, Kshitij
    Jain, Ankit
    Jadeja, Dev
    Pate, Harvi
    Roy, Mohendra
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,