Uniform Asymptotic Approximation Method with Pöschl-Teller Potential

被引:0
|
作者
Pan, Rui [1 ]
Marchetta, John Joseph [2 ]
Saeed, Jamal [1 ]
Cleaver, Gerald [2 ]
Li, Bao-Fei [3 ,4 ]
Wang, Anzhong [1 ]
Zhu, Tao [3 ,4 ]
机构
[1] Baylor Univ, Phys Dept, GCAP CASPER, Waco, TX 76798 USA
[2] Baylor Univ, Phys Dept, EUCOS CASPER, Waco, TX 76798 USA
[3] Zhejiang Univ Technol, Inst Adv Phys & Math, Hangzhou 310032, Peoples R China
[4] Zhejiang Univ Technol, United Ctr Gravitat Wave Phys UCGWP, Hangzhou 310032, Peoples R China
关键词
loop quantum cosmology; cosmological perturbations; power spectrum; black holes; quasi-normal modes; gravitational waves; 98.80.Cq; 98.80.Qc; 04.50.Kd; 04.60.Bc; LINEAR-DIFFERENTIAL EQUATIONS; QUANTUM; GRAVITY; MODES;
D O I
10.3390/universe9110471
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study analytical approximate solutions for second-order homogeneous differential equations with the existence of only two turning points (but without poles) by using the uniform asymptotic approximation (UAA) method. To be more concrete, we consider the Poschl-Teller (PT) potential, for which analytical solutions are known. Depending on the values of the parameters involved in the PT potential, we find that the upper bounds of the errors of the approximate solutions in general are less than or similar to 0.15 similar to 10% for the first-order approximation of the UAA method. The approximations can be easily extended to high orders, for which the errors are expected to be much smaller. Such obtained analytical solutions can be used to study cosmological perturbations in the framework of quantum cosmology as well as quasi-normal modes of black holes.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Bound states of the Schrdinger equation for the Pschl-Teller double-ring-shaped Coulomb potential
    陆法林
    陈昌远
    Chinese Physics B, 2010, (10) : 92 - 97
  • [32] Global monopole effects on exact s-state solution under trigonometric Pöschl-Teller potential
    Ahmed, Faizuddin
    Bouzenada, Abdelmalek
    Moreira, Allan R. P.
    MOLECULAR PHYSICS, 2025, 123 (03)
  • [33] P?schl-Teller Ⅰ势势代数及同谱势研究
    熊露霖
    谭鑫
    罗光
    重庆师范大学学报(自然科学版), 2022, 39 (06) : 110 - 117
  • [34] SO(2,2) representations in polar coordinates and Pöschl-Teller potentials
    Blazquez, M.
    Negro, Javier
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (19)
  • [35] Publisher Correction: Two-dimensional Dirac particles in a Pöschl-Teller waveguide
    R. R. Hartmann
    M. E. Portnoi
    Scientific Reports, 10
  • [36] Energy spectrum and magnetic susceptibility of the improved Po<spacing diaeresis>schl-Teller potential
    Eyube, E. S.
    Yusuf, I.
    Omugbe, E.
    Makasson, C. R.
    Onate, C. A.
    Mohammed, B. D.
    Balami, B. Y.
    Tahir, A. M.
    PHYSICA B-CONDENSED MATTER, 2024, 694
  • [37] 对称Pschl-Teller势的非线性谱生成代数
    倪致祥
    高能物理与核物理, 1999, (03) : 289 - 297
  • [38] Nonlocal effects on second-harmonic generation in a Pöschl-Teller quantum well
    G. Wang
    Q. Guo
    The European Physical Journal B, 2008, 63 : 219 - 225
  • [39] Exact solutions of the Dirac equation with Pschl-Teller double-ring-shaped Coulomb potential via the Nikiforov-Uvarov method
    E.Maghsoodi
    H.Hassanabadi
    S.Zarrinkamar
    ChinesePhysicsB, 2013, 22 (03) : 121 - 125
  • [40] Absorption Spectra of Hydrogen-Like Donor Impurity in GaAs Quantum Well with Modified Pöschl-Teller Potential
    T. A. Sargsian
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2019, 54 : 168 - 174