Industrial few-shot fractal object detection

被引:1
|
作者
Huang, Haoran [1 ]
Luo, Xiaochuan [1 ]
Yang, Chen [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, 3-11,Wenhua Rd, Shenyang 110819, Liaoning, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 28期
基金
中国国家自然科学基金;
关键词
Few-shot object detection; Fractal object; Gradient combination; YOLOv7;
D O I
10.1007/s00521-023-08889-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practical industrial visual inspection tasks, foreign object data are difficult to collect and accumulate, hence few-shot object detection has gradually become the focus of research. It has been observed that industrial foreign objects are often different from natural data and are always fractal objects. Its form is a rough or fragmented geometric shape, and its features are relatively monotonous and difficult to distinguish. Optimization-based meta-learning is a powerful approach to few-shot learning. It updates model weights through a parameter optimization strategy enabling more efficient learning when faced with new tasks with few samples. Therefore, we proposed a gradient scout strategy, which used the intelligent optimization idea to optimize the meta-training outer-loop parallel gradient optimization method to improve the training effect of few-shot fractal object detection. Meanwhile, we proposed a fractal information amplified learning module, which could improve the detection ability of few-shot fractal objects more quickly under the same training period. They formed FLGS (fractal information amplified learning with gradient scout), which was deployed at zero cost. YOLOv7 was advanced to a new industrial fractal object detection model under FLGS. The experimental results on the IGBT surface foreign object dataset showed that our gradient scout strategy was superior to the other eight few-shot meta-learning algorithms. FLGS significantly accelerated the improvement of fractal object detection ability and maintained a high-level mean average precision.
引用
收藏
页码:21055 / 21069
页数:15
相关论文
共 50 条
  • [11] Hallucination Improves Few-Shot Object Detection
    Zhang, Weilin
    Wang, Yu-Xiong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13003 - 13012
  • [12] Few-Shot Object Detection with Model Calibration
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 720 - 739
  • [13] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447
  • [14] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [15] Transformation Invariant Few-Shot Object Detection
    Li, Aoxue
    Li, Zhenguo
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3093 - 3101
  • [16] Few-Shot Object Detection with Weight Imprinting
    Dingtian Yan
    Jitao Huang
    Hai Sun
    Fuqiang Ding
    Cognitive Computation, 2023, 15 : 1725 - 1735
  • [17] Few-Shot Object Detection with Foundation Models
    Han, Guangxing
    Lim, Ser-Nam
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 28608 - 28618
  • [18] Few-Shot Object Detection in Unseen Domains
    Guirguis, Karim
    Eskandar, George
    Kayser, Matthias
    Yang, Bin
    Beyerer, Juergen
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 98 - 107
  • [19] Evaluating the Energy Efficiency of Few-Shot Learning for Object Detection in Industrial Settings
    Tsoumplekas, Georgios
    Li, Vladislav
    Siniosoglou, Ilias
    Argyriou, Vasileios
    Goudos, Sotirios K.
    Moscholios, Ioannis D.
    Radoglou-Grammatikis, Panagiotis
    Sarigiannidis, Panagiotis
    2024 IEEE 3RD REAL-TIME AND INTELLIGENT EDGE COMPUTING WORKSHOP, RAGE 2024, 2024, : 43 - 48
  • [20] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16353 - 16367