Superconducting transition-edge sensors in tomorrow physics

被引:1
|
作者
Pepe, C. [1 ]
机构
[1] INFN Sez Torino Torino, Ist Nazl Ric Metrolog, Dipartimento Elettron Telecomun, Politecn Torino, Turin, Italy
关键词
D O I
10.1393/ncc/i2023-23075-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
. - Transition-edge sensors (TESs) are outstanding calorimeters based on the steep superconductive transition of a metallic film. Among photon detectors, they belong to the top-tier positions for the high-energy resolutions and the low dark count rates. They are usually applied to detect electromagnetic energy from gamma-ray to visible and submillimetre wavelengths, but their use goes further. INRiM is presently involved in the development of TESs that pertain to different fields. In fact, TES capability of revealing massless or massive particles, while measuring their energies, can be applied in the quantum technologies, metrology and telecommunications, resolving photon signals from noise and counting them, as well as in the astrophysical and particle frameworks, from neutrino mass to multi -messenger astronomy measurements. For all these reasons, TESs are constantly under development in order to fulfil the more severe experimental requirements. The latest results obtained at INRiM on TESs performances and applications will be presented.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Operation of transition-edge sensors with excess thermal noise
    Maasilta, IJ
    Kinnunen, KM
    Nuottajärvi, AK
    Leppäniemi, J
    Luukanen, A
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (05): : S242 - S245
  • [42] Proximity effects and nonequilibrium superconductivity in transition-edge sensors
    Sadleir, John E.
    Smith, Stephen J.
    Robinson, Ian K.
    Finkbeiner, Fred M.
    Chervenak, James A.
    Bandler, Simon R.
    Eckart, Megan E.
    Kilbourne, Caroline A.
    PHYSICAL REVIEW B, 2011, 84 (18):
  • [43] Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors
    Faramarzi, F.
    De Haan, T.
    Kusaka, A.
    Lee, A.
    Neuhauser, B.
    Plambeck, R.
    Raum, C.
    Suzuki, A.
    Westbrook, B.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (3-4) : 498 - 504
  • [44] Dependence of transition width on current and critical current in transition-edge sensors
    Morgan, K. M.
    Pappas, C. G.
    Bennett, D. A.
    Gard, J. D.
    Hays-Wehle, J. P.
    Hilton, G. C.
    Reintsema, C. D.
    Schmidt, D. R.
    Ullom, J. N.
    Swetz, D. S.
    APPLIED PHYSICS LETTERS, 2017, 110 (21)
  • [45] Improving Energy Detection Efficiency of Ti-Based Superconducting Transition-Edge Sensors with Optical Cavity
    Geng, Y.
    Zhang, W.
    Li, P. Z.
    Zhong, J. Q.
    Wang, Z.
    Miao, W.
    Ren, Y.
    Wang, J. F.
    Yao, Q. J.
    Shi, S. C.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 556 - 562
  • [46] A Two-Fluid Model for the Transition Shape in Transition-Edge Sensors
    Bennett, D. A.
    Swetz, D. S.
    Horansky, R. D.
    Schmidt, D. R.
    Ullom, J. N.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 167 (3-4) : 102 - 107
  • [47] Superconducting Transition-Edge Sensors Optimized for High-Efficiency Photon-Number Resolving Detectors
    Lita, A. E.
    Calkins, B.
    Pellouchoud, L. A.
    Miller, A. J.
    Nam, S.
    ADVANCED PHOTON COUNTING TECHNIQUES IV, 2010, 7681
  • [48] Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors
    F. Faramarzi
    T. De Haan
    A. Kusaka
    A. Lee
    B. Neuhauser
    R. Plambeck
    C. Raum
    A. Suzuki
    B. Westbrook
    Journal of Low Temperature Physics, 2018, 193 : 498 - 504
  • [49] A Two-Fluid Model for the Transition Shape in Transition-Edge Sensors
    D. A. Bennett
    D. S. Swetz
    R. D. Horansky
    D. R. Schmidt
    J. N. Ullom
    Journal of Low Temperature Physics, 2012, 167 : 102 - 107
  • [50] Improving Energy Detection Efficiency of Ti-Based Superconducting Transition-Edge Sensors with Optical Cavity
    Y. Geng
    W. Zhang
    P. Z. Li
    J. Q. Zhong
    Z. Wang
    W. Miao
    Y. Ren
    J. F. Wang
    Q. J. Yao
    S. C. Shi
    Journal of Low Temperature Physics, 2020, 199 : 556 - 562