Lightweight Model for Botnet Attack Detection in Software Defined Network-Orchestrated IoT

被引:5
|
作者
Negera, Worku Gachena [1 ]
Schwenker, Friedhelm [2 ]
Debelee, Taye Girma [3 ,4 ]
Melaku, Henock Mulugeta [1 ]
Feyisa, Degaga Wolde [3 ]
机构
[1] Addis Ababa Univ, Addis Ababa Inst Technol, Addis Ababa, Ethiopia
[2] Univ Ulm, Inst Neural Informat Proc, D-89069 Ulm, Germany
[3] Ethiopian Artificial Intelligence Inst, Addis Ababa, Ethiopia
[4] Addis Ababa Sci & Technol Univ, Dept Elect & Comp Engn, Addis Ababa, Ethiopia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 08期
关键词
botnet; IoT; SDN; SDN-enabled IoT; detection; lightweight model; deep learning; traditional machine learning; INTERNET; THREATS;
D O I
10.3390/app13084699
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Internet of things (IoT) is being used in a variety of industries, including agriculture, the military, smart cities and smart grids, and personalized health care. It is also being used to control critical infrastructure. Nevertheless, because the IoT lacks security procedures and lack the processing power to execute computationally costly antimalware apps, they are susceptible to malware attacks. In addition, the conventional method by which malware-detection mechanisms identify a threat is through known malware fingerprints stored in their database. However, with the ever-evolving and drastic increase in malware threats in the IoT, it is not enough to have traditional antimalware software in place, which solely defends against known threats. Consequently, in this paper, a lightweight deep learning model for an SDN-enabled IoT framework that leverages the underlying IoT resource-constrained devices by provisioning computing resources to deploy instant protection against botnet malware attacks is proposed. The proposed model can achieve 99% precision, recall, and F1 score and 99.4% accuracy. The execution time of the model is 0.108 milliseconds with 118 KB size and 19,414 parameters. The proposed model can achieve performance with high accuracy while utilizing fewer computational resources and addressing resource-limitation issues.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Botnet Attack Detection at the IoT Edge Based on Sparse Representation
    Tzagkarakis, Christos
    Petroulakis, Nikolaos
    Ioannidis, Sotiris
    2019 GLOBAL IOT SUMMIT (GIOTS), 2019,
  • [22] Botnet attack detection in IoT using hybrid optimisation enabled deep stacked autoencoder network
    Kalidindi, Archana
    Arrama, Mahesh Babu
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 22 (02) : 77 - 88
  • [23] NFDLM: A Lightweight Network Flow based Deep Learning Model for DDoS Attack Detection in IoT Domains
    Saurabh, Kumar
    Kumar, Tanuj
    Singh, Uphar
    Vyasl, O. P.
    Khondoker, Rahamatullah
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 736 - 742
  • [24] DDOSHIELD-IoT: A Testbed for Simulating and Lightweight Detection of IoT Botnet DDoS Attacks
    De Vivo, Simona
    Obaidat, Islam
    Dai, Dong
    Liguori, Pietro
    2024 54TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W 2024, 2024, : 1 - 8
  • [25] A Lightweight Trust Mechanism with Attack Detection for IoT
    Zhou, Xujie
    Tang, Jinchuan
    Dang, Shuping
    Chen, Gaojie
    ENTROPY, 2023, 25 (08)
  • [26] A DDoS Attack Detection Method Based on SVM in Software Defined Network
    Ye, Jin
    Cheng, Xiangyang
    Zhu, Jian
    Feng, Luting
    Song, Ling
    SECURITY AND COMMUNICATION NETWORKS, 2018,
  • [27] Review on distributed denial of service attack detection in software defined network
    Karthika P.
    Karmel A.
    International Journal of Wireless and Mobile Computing, 2023, 25 (02) : 128 - 146
  • [28] Machine Learning-Based Botnet Detection in Software-Defined Network: A Systematic Review
    Shinan, Khlood
    Alsubhi, Khalid
    Alzahrani, Ahmed
    Ashraf, Muhammad Usman
    SYMMETRY-BASEL, 2021, 13 (05):
  • [29] A Novel Paradigm for IoT Security: ResNet-GRU Model Revolutionizes Botnet Attack Detection
    Jyotsna, A.
    Anita, E. A. Mary
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (12) : 298 - 310
  • [30] A novel botnet attack detection for IoT networks based on communication graphs
    Munoz, David Concejal
    Valiente, Antonio del-Corte
    CYBERSECURITY, 2023, 6 (01)