Daily Water Level Time Series Prediction Using ECRBM-Based Ensemble Optimized Neural Network Model

被引:4
|
作者
Fu, Yi [1 ]
Zhou, Xinzhi [1 ]
Li, Bo [2 ]
Zhang, Yuexin [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610000, Peoples R China
[2] Sichuan Univ, Coll Water Resources & Hydropower Engn, Chengdu 610000, Peoples R China
关键词
Water level prediction; Continuous restricted Boltzmann machine; Gated recurrent unit (GRU); Sparrow search algorithm (SSA); Ensemble neural network model; MACHINE;
D O I
10.1061/(ASCE)HE.1943-5584.0002219
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Daily water level prediction for rivers is of great significance in flood prevention and enhanced water resources supervision. In order to accurately predict daily water level time series without sufficient data despite the need for large training data sets for neural networks, this paper proposes an innovative daily water level forecasting model, ECRBM-GRU-SSA, which combines the enhanced continuous restricted Boltzmann machine (ECRBM), the gated recurrent neural unit (GRU), and the sparrow search algorithm (SSA). The ECRBM extracts input features and then cooperates with the ensemble strategy to increase the generalization ability of the final model. SSA adjusts model parameters. The contribution of each component to the final prediction result is analyzed using daily water level meteorological data from the Qingxi River. The accuracy of the proposed model is verified by comparing it with basic prediction models like support vector machine (SVM), random forest (RF), and GRU and with improved models such as ECRBM-GRU and GRU-SSA. The indicators RMSE, MAE, R and NSE are improved from 11.5% to 57.3%, 9.3% to 73.6%, 0.5% to 4.6%, and 5.6% to 31.9%, respectively. Therefore, the proposed model provides technical support for staff managing water resources. (C) 2022American Society of Civil Engineers.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] An adaptive local linear optimized radial basis functional neural network model for financial time series prediction
    Patra, A.
    Das, S.
    Mishra, S. N.
    Senapati, M. R.
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (01): : 101 - 110
  • [42] An adaptive local linear optimized radial basis functional neural network model for financial time series prediction
    A. Patra
    S. Das
    S. N. Mishra
    M. R. Senapati
    Neural Computing and Applications, 2017, 28 : 101 - 110
  • [43] A novel nonlinear neural network ensemble model for financial time series forecasting
    Lai, Kin Keung
    Yu, Lean
    Wang, Shouyang
    Wei, Huang
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 790 - 793
  • [44] Water Level Prediction using Artificial Neural Network with Particle Swarm Optimization Model
    Panyadee, Pornnapa
    Champrasert, Paskorn
    Aryupong, Chuchoke
    2017 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOIC7), 2017,
  • [45] Ensemble Neural Network with Type-2 Fuzzy Weights Using Response Integration for Time Series Prediction
    Gaxiola, Fernando
    Melin, Patricia
    Valdez, Fevrier
    Castro, Juan R.
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 175 - 189
  • [46] Neural network based system in evapotranspiration time series prediction
    Predrag Popović
    Milan Gocić
    Katarina Petković
    Slaviša Trajković
    Earth Science Informatics, 2023, 16 : 919 - 928
  • [47] Neural network based system in evapotranspiration time series prediction
    Popovic, Predrag
    Gocic, Milan
    Petkovic, Katarina
    Trajkovic, Slavisa
    EARTH SCIENCE INFORMATICS, 2023, 16 (01) : 919 - 928
  • [48] Prediction of chaotic time series based on wavelet neural network
    Gao, L
    Lu, L
    Li, Z
    OCEANS 2001 MTS/IEEE: AN OCEAN ODYSSEY, VOLS 1-4, CONFERENCE PROCEEDINGS, 2001, : 2046 - 2050
  • [49] Artificial neural network based on time series prediction of reliability
    Xu, Kai
    Zhu, Meilin
    Hou, Guoxiang
    Gao, Jun
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 2000, 28 (08): : 35 - 37
  • [50] Fault prediction for nonlinear time series based on neural network
    College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    不详
    Zidonghua Xuebao, 2007, 7 (744-748): : 744 - 748