Characterizations of Lie centralizers of triangular algebras

被引:7
|
作者
Liu, Lei [1 ]
Gao, Kaitian [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 14期
基金
中国国家自然科学基金;
关键词
Lie centralizer; centralizer; triangular algebra; nest algebra; DERIVATIONS; RINGS;
D O I
10.1080/03081087.2022.2104788
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an unital algebra over the complex field C. A linear map phi from A into itself is called a Lie centralizer at a given point G is an element of A if phi([S, T]) = [S, phi(T)] = [phi(S), T] for all S,T is an element of A with ST = G. The aim of this paper is to give a description of Lie centralizers at an arbitrary but fixed point on triangular algebras. These results are then applied to nest algebras and upper triangular matrix algebras.
引用
收藏
页码:2375 / 2391
页数:17
相关论文
共 50 条
  • [31] Lie (Jordan) centralizers on generalized matrix algebras
    Jabeen, Aisha
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (01) : 278 - 291
  • [32] The index of centralizers of elements in classical Lie algebras
    Yakimova, OS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2006, 40 (01) : 42 - 51
  • [33] ON LIE TRIPLE CENTRALIZERS OF VON NEUMANN ALGEBRAS
    Fadaee, Behrooz
    Ghahramani, Hoger
    OPERATORS AND MATRICES, 2024, 18 (03): : 559 - 570
  • [34] LIE TRIPLE CENTRALIZERS ON GENERALIZED MATRIX ALGEBRAS
    Fadaee, Behrooz
    Ghahramani, Hoger
    Jing, Wu
    QUAESTIONES MATHEMATICAE, 2023, 46 (02) : 281 - 300
  • [35] The index of centralizers of elements in classical Lie algebras
    O. S. Yakimova
    Functional Analysis and Its Applications, 2006, 40 : 42 - 51
  • [36] Nonlinear Lie Centralizers on Rings and Operator Algebras
    Zhang, Fangjuan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (04): : 107 - 116
  • [37] On nonlinear Lie centralizers of generalized matrix algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (14): : 2693 - 2705
  • [38] Characterizations for Supersolvable Lie Algebras
    Salemkar, Ali Reza
    Chehrazi, Sara
    Tayanloo, Fatemeh
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) : 2310 - 2316
  • [39] Lie derivations of triangular algebras
    Cheung, WS
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03): : 299 - 310
  • [40] Lie σ-derivations of triangular algebras
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2966 - 2983