Estimating quantum mutual information through a quantum neural network

被引:4
|
作者
Shin, Myeongjin [1 ]
Lee, Junseo [2 ,3 ]
Jeong, Kabgyun [4 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Comp, Daejeon 34141, South Korea
[2] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea
[3] Norma Inc, Quantum Secur R&D, Seoul 04799, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[5] Korea Inst Adv Study, Sch Computat Sci, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Quantum mutual information; Donsker-Varadhan representation; Quantum neural network; Parameterized quantum circuits;
D O I
10.1007/s11128-023-04253-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a method of quantum machine learning called quantum mutual information neural estimation (QMINE) for estimating von Neumann entropy and quantum mutual information, which are fundamental properties in quantum information theory. The QMINE proposed here basically utilizes a technique of quantum neural networks (QNNs), to minimize a loss function that determines the von Neumann entropy, and thus quantum mutual information, which is believed more powerful to process quantum datasets than conventional neural networks due to quantum superposition and entanglement. To create a precise loss function, we propose a quantum Donsker-Varadhan representation (QDVR), which is a quantum analog of the classical Donsker-Varadhan representation. By exploiting a parameter shift rule on parameterized quantum circuits, we can efficiently implement and optimize the QNN and estimate the quantum entropies using the QMINE technique. Furthermore, numerical observations support our predictions of QDVR and demonstrate the good performance of QMINE.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Conditional mutual information and quantum steering
    Kaur, Eneet
    Wang, Xiaoting
    Wilde, Mark M.
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [22] Quantum neural network
    G. Bonnell
    G. Papini
    International Journal of Theoretical Physics, 1997, 36 : 2855 - 2875
  • [23] Quantum neural network
    Bonnell, G
    Papini, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (12) : 2855 - 2875
  • [24] Quantum Neural Network
    Bonnell, G.
    Papini, G.
    International Journal of Theoretical Physics, 36 (12):
  • [25] Classical and quantum parts of conditional mutual information for open quantum systems
    Huang, Zhiqiang
    Guo, Xiao-Kan
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [26] Retrieving and routing quantum information in a quantum network
    S. Sazim
    V. Chiranjeevi
    I. Chakrabarty
    K. Srinathan
    Quantum Information Processing, 2015, 14 : 4651 - 4664
  • [27] Retrieving and routing quantum information in a quantum network
    Sazim, S.
    Chiranjeevi, V.
    Chakrabarty, I.
    Srinathan, K.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (12) : 4651 - 4664
  • [28] Transmission of quantum information in a quantum network: A quantum optical implementation
    van Enk, S
    Cirac, JI
    Zoller, P
    Kimble, HJ
    Mabuchi, H
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1998, 46 (6-8): : 689 - 695
  • [29] Limitations to Estimating Mutual Information in Large Neural Populations
    Molter, Jan
    Goodhill, Geoffrey J.
    ENTROPY, 2020, 22 (04)
  • [30] Transmission of quantum information through quantum fields
    Simidzija, Petar
    Ahmadzadegan, Aida
    Kempf, Achim
    Martin-Martinez, Eduardo
    PHYSICAL REVIEW D, 2020, 101 (03)