Exploiting classifier inter-level features for efficient out-of-distribution detection

被引:1
|
作者
Fayyad, Jamil [1 ]
Gupta, Kashish [2 ]
Mahdian, Navid [2 ]
Gruyer, Dominique [3 ]
Najjaran, Homayoun [2 ]
机构
[1] Univ British Columbia, Sch Engn, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[2] Univ Victoria, Fac Engn & Comp Sci, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[3] Univ Gustave Eiffel, PICS L COSYS, IFSTTAR, 25 Marronniers, F-78000 Champs Sur Marne, France
关键词
Out -of -distribution detection; Deep learning -based classification; Machine learning; Feature exploitation; Intermediate feature extraction;
D O I
10.1016/j.imavis.2023.104897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning approaches have achieved state-of-the-art performance in a wide range of applications. Most often, however, it is falsely assumed that samples at inference follow a similar distribution as the training data. This assumption impairs models' ability to handle Out-of-Distribution (OOD) data during deployment. While several OOD detection approaches mostly focus on outputs of the last layer, we propose a novel mechanism that exploits features extracted from intermediate layers of a deep classifier. Specifically, we train an off-the-shelf auxiliary network using features of early layers to learn distinctive representations that improve OOD detection. The proposed network can be appended to any classification model without imposing any modification to its original architecture. Additionally, the mechanism does not require access to OOD data during training. We evaluate the performance of the mechanism on a variety of backbone architectures and datasets for near-OOD and far-OOD scenarios. The results demonstrate improvements in OOD detection compared to other state-of-the-art approaches. In particular, our proposed mechanism improves AUROC by 14.2% and 8.3% in comparison to the strong OOD baseline method, and by 3.2% and 3.9% in comparison to the second-best performing approach, on CIFAR-10 and CIFAR-100 datasets respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [22] SAFE: Sensitivity-Aware Features for Out-of-Distribution Object Detection
    Wilson, Samuel
    Fischer, Tobias
    Dayoub, Feras
    Miller, Dimity
    Sunderhauf, Niko
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 23508 - 23519
  • [23] Exploring Channel-Aware Typical Features for Out-of-Distribution Detection
    He, Rundong
    Yuan, Yue
    Han, Zhongyi
    Wang, Fan
    Su, Wan
    Yin, Yilong
    Liu, Tongliang
    Gong, Yongshun
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 11, 2024, : 12402 - 12410
  • [24] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [25] Multi-Level Knowledge Distillation for Out-of-Distribution Detection in Text
    Wu, Qianhui
    Jiang, Huiqiang
    Yin, Haonan
    Karlsson, Borje F.
    Lin, Chin-Yew
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 7317 - 7332
  • [26] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [27] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943
  • [28] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397
  • [29] Robust Cough Detection With Out-of-Distribution Detection
    Chen, Yuhan
    Attri, Pankaj
    Barahona, Jeffrey
    Hernandez, Michelle L.
    Carpenter, Delesha
    Bozkurt, Alper
    Lobaton, Edgar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3210 - 3221
  • [30] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34