Design and synthesis of non-fused non-fullerene acceptors containing naphthobisthiadiazole for organic solar cells

被引:5
|
作者
Li, Yuanfeng [1 ,2 ]
Zhang, Difei [1 ]
Huang, Zhenqiang [1 ]
Zhang, Tianyang [1 ,2 ]
Zheng, Nan [1 ]
Peng, Feng [1 ,2 ]
Ying, Lei [1 ,2 ]
Huang, Fei [1 ,2 ]
机构
[1] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[2] South China Inst Collaborat Innovat, Dongguan 523808, Peoples R China
关键词
NONFULLERENE ACCEPTORS; CONJUGATED POLYMER; ELECTRON-ACCEPTOR; SIDE-CHAINS; PERFORMANCE; EFFICIENCY; PHOTODETECTORS; RECOMBINATION; MORPHOLOGY; ENABLES;
D O I
10.1039/d3tc01742g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most of the non-fullerene acceptors that have recently emerged for application in organic solar cells are based on fused rings as the central unit, typically requiring multi-step reactions that inevitably increase the overall cost of the target molecules. To explore more synthetically accessible non-fullerene acceptors, here we designed and synthesized two naphtho[1,2-c:5,6-c ']bis([1,2,5]thiadiazole) derivatives, containing fluorinated and chlorinated dicyanomethylidene-indan-1-one units as the flanking end-groups, which were denoted as NTIC-4F and NTIC-4Cl, respectively. The halogen substitution has trivial effects on the optical and frontier molecular orbital energy levels, while the fluorinated NTIC-4F showed distinct thermal properties and crystallinity compared to the chlorinated counterpart NTIC-4Cl. When blended with the electron-donating polymer PTzBI-dF, both compounds showed good miscibility and favorable molecular orientation, as shown in both atomic force microscopy and transmission electron microscopy images. After processing the PTzBI-dF:NTIC-4F or PTzBI-dF:NTIC-4Cl bulk-heterojunction layer with a trivial amount of chloronaphthalene as the solvent additive, it is noted that the film based on NTIC-4Cl showed a more favorable morphology and thus resulted in slightly higher power conversion efficiency of the organic solar cells. These findings provide guidance for the design of non-fused non-fullerene acceptors based on naphthobisthiadiazole as the central unit. Two non-fullerene acceptors containing naphtho[1,2-c:5,6-c ']bis([1,2,5]thiadiazole) moieties with fluorinated and chlorinated dicyanomethylidene-indan-1-one units as the flanking end-groups were developed and used for constructing organic solar cells.
引用
收藏
页码:15426 / 15434
页数:9
相关论文
共 50 条
  • [31] Stereoisomeric Non-Fullerene Acceptors-Based Organic Solar Cells
    Liu, Lixuan
    Yan, Yangjun
    Zhao, Shengda
    Wang, Tong
    Zhang, Wenqing
    Zhang, Jianqi
    Hao, Xiaotao
    Zhang, Yajie
    Zhang, Xinghua
    Wei, Zhixiang
    SMALL, 2024, 20 (03)
  • [32] Ternary organic solar cells based on non-fullerene acceptors: A review
    Chang, Lichun
    Sheng, Ming
    Duan, Leiping
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2021, 90
  • [33] A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells
    Armin, Ardalan
    Li, Wei
    Sandberg, Oskar J.
    Xiao, Zuo
    Ding, Liming
    Nelson, Jenny
    Neher, Dieter
    Vandewal, Koen
    Shoaee, Safa
    Wang, Tao
    Ade, Harald
    Heumueller, Thomas
    Brabec, Christoph
    Meredith, Paul
    ADVANCED ENERGY MATERIALS, 2021, 11 (15)
  • [34] Scalable fabrication of organic solar cells based on non-fullerene acceptors
    Gertsen, Anders S.
    Castro, Marcial Fernandez
    Sondergaard, Roar R.
    Andreasen, Jens W.
    FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (01):
  • [35] Dilute Donor Organic Solar Cells Based on Non-fullerene Acceptors
    Mcanally, Shaun
    Jin, Hui
    Chu, Ronan
    Mallo, Neil
    Wang, Xiao
    Burn, Paul L.
    Gentle, Ian R.
    Shaw, Paul E.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28958 - 28968
  • [36] Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors
    Liu, Baiqiao
    Xu, Yunhua
    Xia, Dongdong
    Xiao, Chengyi
    Yang, Zhaofan
    Li, Weiwei
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (03) : 1 - 16
  • [37] Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells
    Cnops, Kjell
    Zango, German
    Genoe, Jan
    Heremans, Paul
    Martinez-Diaz, M. Victoria
    Torres, Tomas
    Cheyns, David
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (28) : 8991 - 8997
  • [39] Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors
    Shahidul Alam
    Rico Meitzner
    Ogechi V. Nwadiaru
    Christian Friebe
    Jonathan Cann
    Johannes Ahner
    Christoph Ulbricht
    Zhipeng Kan
    Stephanie Höppener
    Martin D. Hager
    Daniel A. M. Egbe
    Gregory C. Welch
    Frédéric Laquai
    Ulrich S. Schubert
    Harald Hoppe
    Chemical Papers, 2018, 72 : 1769 - 1778
  • [40] Designing easily synthesizable non-fused small acceptors for organic solar cells
    Zahid, Saba
    Rasool, Alvina
    Zahid, Sabeeha
    Ans, Muhammad
    Iqbal, Javed
    El Azabl, Islam H.
    Mersal, Gaber A. M.
    Ibrahim, Mohamed M.
    SOLAR ENERGY, 2022, 246 : 23 - 35