On symmetric positive definite preconditioners for multiple saddle-point systems

被引:6
|
作者
Pearson, John W. [1 ]
Potschka, Andreas [2 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg,Peter Guthrie, Edinburgh EH9 3FD, Scotland
[2] Tech Univ Clausthal, Inst Math, Erzstr 1, D-38678 Clausthal Zellerfeld, Germany
基金
英国工程与自然科学研究理事会;
关键词
preconditioning; multiple saddle-point systems; Krylov subspace methods; Minres; FINITE-ELEMENT PROBLEMS; ROBUST PRECONDITIONERS; INDEFINITE SYSTEMS; ITERATIVE SOLVERS; SCHUR COMPLEMENT; OPTIMIZATION;
D O I
10.1093/imanum/drad046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider symmetric positive definite preconditioners for multiple saddle-point systems of block tridiagonal form, which can be applied within the MINRES algorithm. We describe such a preconditioner for which the preconditioned matrix has only two distint eigenvalues, 1 and -1, when the preconditioner is applied exactly. We discuss the relative merits of such an approach compared to a more widely studied block diagonal preconditioner, specify the computational work associated with applying the new preconditioner inexactly, and survey a number of theoretical results for the block diagonal case. Numerical results validate our theoretical findings.
引用
收藏
页码:1731 / 1750
页数:20
相关论文
共 50 条
  • [21] Using constraint preconditioners with regularized saddle-point problems
    H. S. Dollar
    N. I. M. Gould
    W. H. A. Schilders
    A. J. Wathen
    Computational Optimization and Applications, 2007, 36 : 249 - 270
  • [22] Refined saddle-point preconditioners for discretized Stokes problems
    Pearson, John W.
    Pestana, Jennifer
    Silvester, David J.
    NUMERISCHE MATHEMATIK, 2018, 138 (02) : 331 - 363
  • [23] Multisplitting preconditioners for a symmetric positive definite matrix
    Yun J.H.
    Kim E.H.
    Oh S.
    Journal of Applied Mathematics and Computing, 2006, 22 (1-2) : 169 - 180
  • [24] Modified Block SSOR Preconditioners for Symmetric Positive Definite Linear Systems
    Zhong-Zhi Bai
    Annals of Operations Research, 2001, 103 : 263 - 282
  • [25] Modified block SSOR preconditioners for symmetric positive definite linear systems
    Bai, ZZ
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 263 - 282
  • [26] Threshold incomplete factorization constraint preconditioners for saddle-point matrices
    Lungten, Sangye
    Schilders, Wil H. A.
    Maubach, Joseph M. L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 545 : 76 - 107
  • [27] Compact quasi-Newton preconditioners for symmetric positive definite linear systems
    Bergamaschi, Luca
    Marin, Jose
    Martinez, Angeles
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (06)
  • [28] Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems
    Bai, ZZ
    Wang, ZQ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 187 (02) : 202 - 226
  • [29] The modified shift-splitting preconditioners for nonsymmetric saddle-point problems
    Zhou, Sheng-Wei
    Yang, Ai-Li
    Dou, Yan
    Wu, Yu-Jiang
    APPLIED MATHEMATICS LETTERS, 2016, 59 : 109 - 114
  • [30] On HSS-based constraint preconditioners for generalized saddle-point problems
    Guo-Feng Zhang
    Zhi-Ru Ren
    Yuan-Yuan Zhou
    Numerical Algorithms, 2011, 57 : 273 - 287