The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs, so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas. Based on a typical sinuous Quaternary channel (Channel I) in the Taranaki Basin, New Zealand, a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I, and the relationships between the quantitative parameters and the morphological changes of the Channel I, as well as the controlling factors affecting those morphological changes, were discussed. The results are as follows: (1) in the quantitative analysis, six parameters were selected: the channel depth, width, sinuosity, and aspect ratio (width/depth), the channel swing amplitude (& lambda;) and the channel bend frequency (& omega;); (2) according to the quantitative morphological parameters of the channel (mainly including three parameters such as channel sinuosity, & omega; and & lambda;), the Channel I was divided into three types: the low-sinuous channel (LSC), the high-sinuous channel (HSC), the moderate-sinuous channel (MSC). U-shaped channel cross-sections developed in the LSC, V-shaped channel cross-sections developed in the HSC, including inclined-V and symmetric-V cross-sections, and dish-shaped channel cross-sections developed in the MSC; (3) the morphological characteristics of the LSC and MSC were related to their widths and depths, while the morphology of the HSC was greatly affected by the channel width, a change in depth did not affect the HSC morphology; (4) the morphological changes of the Channel I were controlled mainly by the slope gradient, the restricted capacity of the channel and the differential in fluid properties.